A368674 Sum of the squarefree numbers less than n that do not divide n.
0, 0, 2, 3, 5, 5, 16, 21, 20, 16, 33, 33, 44, 48, 63, 84, 86, 92, 103, 105, 112, 130, 165, 177, 183, 173, 211, 191, 214, 202, 273, 302, 290, 318, 359, 395, 406, 422, 465, 503, 520, 508, 603, 611, 623, 621, 692, 728, 732, 722, 719, 749, 790, 832, 827, 875, 876, 924, 1013, 1001
Offset: 1
Examples
a(12) = 33. There are 4 squarefree numbers less than 12 that do not divide 12, namely: 5, 7, 10, and 11. Their sum is 5 + 7 + 10 + 11 = 33.
Programs
-
Mathematica
Table[Sum[k*MoebiusMu[k]^2 (Ceiling[n/k] - Floor[n/k]), {k, n}], {n, 100}]
-
PARI
a(n) = sum(k=1, n-1, if ((n % k) && issquarefree(k), k)); \\ Michel Marcus, Jan 03 2024
Formula
a(n) = Sum_{k=1..n} k * mu(k)^2 * (ceiling(n/k) - floor(n/k)).