cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A368708 a(n) = hypergeom([-1 - n, -n, 1 - n], [2, 3], -2).

Original entry on oeis.org

1, 1, 3, 13, 69, 417, 2763, 19609, 146793, 1146833, 9278595, 77292261, 659973933, 5756169681, 51137399979, 461691066417, 4228199347281, 39216540096993, 367890444302787, 3486697883136957, 33353178454762389, 321754445379041601, 3127955713554766923, 30624486778208481993, 301790556354721667769, 2991957347531210976817
Offset: 0

Views

Author

Joerg Arndt, Jan 04 2024

Keywords

Crossrefs

Programs

  • Maple
    seq(simplify( hypergeom([-1 - n, -n, 1 - n], [2, 3], -2) ), n = 0..25); # Peter Bala, Sep 09 2024
  • Mathematica
    Table[HypergeometricPFQ[{-1-n, -n, 1-n}, {2, 3}, -2], {n, 0, 30}] (* Vaclav Kotesovec, Jan 04 2024 *)
    a[0] := 1; a[n_] := 2^(n + 1)/(n*(n + 1)^2)*Sum[(1/2)^k*Binomial[n + 1, k - 1]*Binomial[n + 1, k]*Binomial[n + 1, k + 1], {k, 1, n}]; Table[a[n], {n, 0, 25}] (* Detlef Meya, May 28 2024 *)
  • Python
    def A368708(n):
        if n == 0: return 1
        return sum(2**k * v for k, v in enumerate(A359363Row(n))) // 2
    print([A368708(n) for n in range(26)]) # Peter Luschny, Jan 04 2024
  • SageMath
    def A368708(n): return PolyA359363(n, 2) // 2 if n > 0 else 1
    print([A368708(n) for n in range(23)])  # Peter Luschny, Jan 04 2024
    

Formula

a(n) = (1/2)*B(n, 2) where B(n, x) are the Baxter polynomials with coefficients A359363, for n > 0. - Peter Luschny, Jan 04 2024
a(n) ~ 3^(n + 7/6) * (2^(2/3) + 2^(1/3) + 1)^(n + 5/3) / (2^(4/3) * Pi * n^4). - Vaclav Kotesovec, Jan 04 2024
a(0) = 1, a(n) = 2^(n + 1)/(n*(n + 1)^2)*Sum_{k=1..n} (1/2)^k*binomial(n + 1, k - 1)*binomial(n + 1, k)*binomial(n + 1, k + 1). - Detlef Meya, May 29 2024
From Peter Bala, Sep 09 2024: (Start)
a(n+1) = Sum_{k = 0..n} A056939(n, k)*2^k.
P-recursive: (n+1)*(n+3)*(n+2)*(3*n-2)*a(n) = 3*(9*n^3+3*n^2-4*n+4)*(n+1)*a(n-1) + 3*(n-2)*(3*n-1)*(9*n^2-3*n-10)*a(n-2) + 27*(3*n+1)*(n-3)*(n-2)^2*a(n-3) = 0 with a(0) = 1, a(1) = 1 and a(2) = 3. (End)