A368718 a(n) = n! * Sum_{k=0..n} (-1)^(n-k) * k^5 / k!.
0, 1, 30, 153, 412, 1065, 1386, 7105, -24072, 275697, -2656970, 29387721, -352403820, 4581620953, -64142155518, 962133092145, -15394128425744, 261700184657505, -4710603321945522, 89501463119441017, -1790029262385620340, 37590614510102111241
Offset: 0
Keywords
Links
- Robert Israel, Table of n, a(n) for n = 0..448
- Eric Weisstein's World of Mathematics, Bell Polynomial.
- Wikipedia, Touchard polynomials
Programs
-
Maple
f:= proc(n) option remember; - n*procname(n-1)+n^5 end proc: f(0):= 0: seq(f(i),i=0..21); # Robert Israel, May 13 2025
-
Mathematica
Table[-5*n + 3*n^3 + n^4 - 2*(-1)^n*n*Subfactorial[n-1], {n, 0, 20}] (* Vaclav Kotesovec, Jul 18 2025 *)
-
PARI
my(N=30, x='x+O('x^N)); concat(0, Vec(serlaplace(sum(k=0, 5, stirling(5, k, 2)*x^k)*exp(x)/(1+x))))
Formula
a(0) = 0; a(n) = -n*a(n-1) + n^5.
E.g.f.: B_5(x) * exp(x) / (1+x), where B_n(x) = Bell polynomials.
a(n) ~ -2*(-1)^n * exp(-1) * n!. - Vaclav Kotesovec, Jul 18 2025
Comments