A368729 Numbers whose prime indices are prime or semiprime. MM-numbers of labeled multigraphs with loops and half-loops without isolated (uncovered) nodes.
1, 3, 5, 7, 9, 11, 13, 15, 17, 21, 23, 25, 27, 29, 31, 33, 35, 39, 41, 43, 45, 47, 49, 51, 55, 59, 63, 65, 67, 69, 73, 75, 77, 79, 81, 83, 85, 87, 91, 93, 97, 99, 101, 105, 109, 115, 117, 119, 121, 123, 125, 127, 129, 135, 137, 139, 141, 143, 145, 147, 149
Offset: 1
Keywords
Examples
The terms together with the corresponding multigraphs begin: 1: {} 3: {{1}} 5: {{2}} 7: {{1,1}} 9: {{1},{1}} 11: {{3}} 13: {{1,2}} 15: {{1},{2}} 17: {{4}} 21: {{1},{1,1}} 23: {{2,2}} 25: {{2},{2}} 27: {{1},{1},{1}} 29: {{1,3}} 31: {{5}} 33: {{1},{3}} 35: {{2},{1,1}} 39: {{1},{1,2}} 41: {{6}} 43: {{1,4}} 45: {{1},{1},{2}} 47: {{2,3}} 49: {{1,1},{1,1}}
Crossrefs
Programs
-
Mathematica
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; Select[Range[100],OddQ[#]&&Max@@Length/@prix/@prix[#]<=2&]
Comments