cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A368736 a(n) = Sum_{k = 1..n} gcd(2*k+1, n).

Original entry on oeis.org

1, 2, 5, 4, 9, 10, 13, 8, 21, 18, 21, 20, 25, 26, 45, 16, 33, 42, 37, 36, 65, 42, 45, 40, 65, 50, 81, 52, 57, 90, 61, 32, 105, 66, 117, 84, 73, 74, 125, 72, 81, 130, 85, 84, 189, 90, 93, 80, 133, 130, 165, 100, 105, 162, 189, 104, 185, 114, 117, 180, 121, 122, 273, 64, 225, 210, 133, 132, 225, 234
Offset: 1

Views

Author

Peter Bala, Jan 04 2024

Keywords

Crossrefs

Programs

  • Maple
    seq(add(gcd(2*k+1, n), k = 1..n), n = 1..70);
    # alternative faster program for large n
    with(numtheory): seq(add(irem(d,2)*phi(d)*n/d, d in divisors(n)), n = 1..70);
  • Mathematica
    Table[Sum[GCD[2*k + 1, n], {k, 1, n}], {n, 1, 100}] (* Vaclav Kotesovec, Jan 11 2024 *)
  • PARI
    a(n) = sum(k = 1, n, gcd(2*k+1, n)); \\ Michel Marcus, Jan 11 2024

Formula

a(2*n) = 2*a(n); a(2*n+1) = A018804(2*n+1) = A344372(2*n+1).
a(n) = Sum_{k = 1..n} gcd(4*k+1, n) = Sum_{k = 1..n} gcd(4*k+3, n).
a(n) = Sum_{d divides n} X(d)*phi(d)*n/d, where phi(n) = A000010(n) and X(n) = 1 if n is odd, else 0, that is, X(n) is the principal Dirichlet character of the reduced residue system mod 2. See A000035.
Multiplicative: a(2^k) = 2^k and for odd prime p, a(p^e) = (e + 1)*p^e - e*p^(e-1).
Dirichlet g.f.: (1 - 2/2^s)/(1 - 1/2^s) * zeta(s-1)^2/zeta(s).
Sum_{k=1..n} a(k) ~ n^2*(2*log(n) - 1 + 4*gamma + 4*log(2)/3 - 12*zeta'(2)/Pi^2) / Pi^2, where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, Jan 11 2024