cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A368745 Triangular array read by rows: T(n, k) is the number of n X 2 Young tableaux with k vertical walls.

Original entry on oeis.org

1, 1, 2, 2, 6, 6, 5, 20, 30, 20, 14, 70, 140, 140, 70, 42, 252, 630, 840, 630, 252, 132, 924, 2772, 4620, 4620, 2772, 924, 429, 3432, 12012, 24024, 30030, 24024, 12012, 3432, 1430, 12870, 51480, 120120, 180180, 180180, 120120, 51480, 12870, 4862, 48620, 218790, 583440, 1021020
Offset: 0

Views

Author

Peter Bala, Feb 04 2024

Keywords

Comments

Same as A336524 with the main diagonal removed.

Examples

			Triangle T(n, k) begins:
    1,
    1,    2,
    2,    6,     6,
    5,   20,    30,    20,
   14,   70,   140,   140,    70,
   42,  252,   630,   840,   630,   252,
  132,  924,  2772,  4620,  4620,  2772,  924,
  429, 3432, 12012, 24024, 30030, 24024, 12012, 3432,
		

Crossrefs

Cf. A336524.

Programs

  • Maple
    A368745 := (n, k) -> 1/(n + 1 - k)*binomial(n, k)*binomial(2*n, n):
    seq(print(seq(A368745(n, k), k = 0..n)), n = 0..10);
  • Mathematica
    A368745row[n_] := Binomial[n, #]*Binomial[2*n, n]/(n+1-#) & [Range[0, n]];
    Array[A368745row, 10, 0] (* Paolo Xausa, Feb 27 2024 *)

Formula

T(n, k) = 1/(n + 1 - k)*binomial(n, k)*binomial(2*n, n).
G.f.: (sqrt(1 - 4*x*y) - sqrt(1 - 4*x*(1 + y)))/(2*x). - Stefano Spezia, Feb 04 2024