A368745 Triangular array read by rows: T(n, k) is the number of n X 2 Young tableaux with k vertical walls.
1, 1, 2, 2, 6, 6, 5, 20, 30, 20, 14, 70, 140, 140, 70, 42, 252, 630, 840, 630, 252, 132, 924, 2772, 4620, 4620, 2772, 924, 429, 3432, 12012, 24024, 30030, 24024, 12012, 3432, 1430, 12870, 51480, 120120, 180180, 180180, 120120, 51480, 12870, 4862, 48620, 218790, 583440, 1021020
Offset: 0
Examples
Triangle T(n, k) begins: 1, 1, 2, 2, 6, 6, 5, 20, 30, 20, 14, 70, 140, 140, 70, 42, 252, 630, 840, 630, 252, 132, 924, 2772, 4620, 4620, 2772, 924, 429, 3432, 12012, 24024, 30030, 24024, 12012, 3432,
Links
- Paolo Xausa, Table of n, a(n) for n = 0..11475 (rows 0..150 of the triangle, flattened).
- Cyril Banderier, Philippe Marchal, and Michael Wallner, Rectangular Young tableaux with local decreases and the density method for uniform random generation (short version), arXiv:1805.09017 [cs.DM], 2018.
Crossrefs
Cf. A336524.
Programs
-
Maple
A368745 := (n, k) -> 1/(n + 1 - k)*binomial(n, k)*binomial(2*n, n): seq(print(seq(A368745(n, k), k = 0..n)), n = 0..10);
-
Mathematica
A368745row[n_] := Binomial[n, #]*Binomial[2*n, n]/(n+1-#) & [Range[0, n]]; Array[A368745row, 10, 0] (* Paolo Xausa, Feb 27 2024 *)
Formula
T(n, k) = 1/(n + 1 - k)*binomial(n, k)*binomial(2*n, n).
G.f.: (sqrt(1 - 4*x*y) - sqrt(1 - 4*x*(1 + y)))/(2*x). - Stefano Spezia, Feb 04 2024
Comments