A368746 Compositions (ordered partitions) of n into odd parts where the first part must be a maximal part.
1, 1, 1, 2, 2, 3, 4, 6, 8, 12, 18, 27, 40, 61, 93, 142, 217, 333, 512, 789, 1217, 1881, 2912, 4514, 7007, 10893, 16956, 26427, 41238, 64426, 100767, 157778, 247301, 388007, 609351, 957836, 1506928, 2372763, 3739035, 5896462, 9305388, 14695124, 23221657, 36718116, 58092690, 91961034
Offset: 0
Keywords
Examples
The a(10) = 18 such compositions are: 1: [ 1 1 1 1 1 1 1 1 1 1 ] 2: [ 3 1 1 1 1 1 1 1 ] 3: [ 3 1 1 1 1 3 ] 4: [ 3 1 1 1 3 1 ] 5: [ 3 1 1 3 1 1 ] 6: [ 3 1 3 1 1 1 ] 7: [ 3 1 3 3 ] 8: [ 3 3 1 1 1 1 ] 9: [ 3 3 1 3 ] 10: [ 3 3 3 1 ] 11: [ 5 1 1 1 1 1 ] 12: [ 5 1 1 3 ] 13: [ 5 1 3 1 ] 14: [ 5 3 1 1 ] 15: [ 5 5 ] 16: [ 7 1 1 1 ] 17: [ 7 3 ] 18: [ 9 1 ]
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..4801
Crossrefs
Cf. A079500.
Programs
-
Maple
b:= proc(n, m) option remember; `if`(n=0, 1, `if`(m=0, add(b(n-2*j+1, 2*j-1), j=1..(n+1)/2), add( b(n-2*j+1, min(n-2*j+1, m)), j=1..(min(n, m)+1)/2))) end: a:= n-> b(n, 0): seq(a(n), n=0..45); # Alois P. Heinz, Jan 04 2024
-
Mathematica
b[n_, m_] := b[n, m] = If[n == 0, 1, If[m == 0, Sum[b[n - 2j + 1, 2j - 1], {j, 1, (n + 1)/2}], Sum[ b[n - 2j + 1, Min[n - 2j + 1, m]], {j, 1, (Min[n, m] + 1)/2}]]]; a[n_] := b[n, 0]; Table[a[n], {n, 0, 45}] (* Jean-François Alcover, Mar 03 2024, after Alois P. Heinz *)
-
PARI
my(N=44, x='x+O('x^N)); Vec(1+sum(n=1, N, x^(2*n-1)/(1-sum(k=1, n, x^(2*k-1)))))
Formula
G.f.: 1 + Sum_{n>=1} x^(2*n-1)/(1 - Sum_{k=1..n} x^(2*k-1) ).