cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A368746 Compositions (ordered partitions) of n into odd parts where the first part must be a maximal part.

Original entry on oeis.org

1, 1, 1, 2, 2, 3, 4, 6, 8, 12, 18, 27, 40, 61, 93, 142, 217, 333, 512, 789, 1217, 1881, 2912, 4514, 7007, 10893, 16956, 26427, 41238, 64426, 100767, 157778, 247301, 388007, 609351, 957836, 1506928, 2372763, 3739035, 5896462, 9305388, 14695124, 23221657, 36718116, 58092690, 91961034
Offset: 0

Views

Author

Joerg Arndt, Jan 04 2024

Keywords

Examples

			The a(10) = 18 such compositions are:
   1:  [ 1 1 1 1 1 1 1 1 1 1 ]
   2:  [ 3 1 1 1 1 1 1 1 ]
   3:  [ 3 1 1 1 1 3 ]
   4:  [ 3 1 1 1 3 1 ]
   5:  [ 3 1 1 3 1 1 ]
   6:  [ 3 1 3 1 1 1 ]
   7:  [ 3 1 3 3 ]
   8:  [ 3 3 1 1 1 1 ]
   9:  [ 3 3 1 3 ]
  10:  [ 3 3 3 1 ]
  11:  [ 5 1 1 1 1 1 ]
  12:  [ 5 1 1 3 ]
  13:  [ 5 1 3 1 ]
  14:  [ 5 3 1 1 ]
  15:  [ 5 5 ]
  16:  [ 7 1 1 1 ]
  17:  [ 7 3 ]
  18:  [ 9 1 ]
		

Crossrefs

Cf. A079500.

Programs

  • Maple
    b:= proc(n, m) option remember; `if`(n=0, 1, `if`(m=0,
          add(b(n-2*j+1, 2*j-1), j=1..(n+1)/2), add(
          b(n-2*j+1, min(n-2*j+1, m)), j=1..(min(n, m)+1)/2)))
        end:
    a:= n-> b(n, 0):
    seq(a(n), n=0..45);  # Alois P. Heinz, Jan 04 2024
  • Mathematica
    b[n_, m_] := b[n, m] = If[n == 0, 1, If[m == 0,
        Sum[b[n - 2j + 1, 2j - 1], {j, 1, (n + 1)/2}], Sum[
        b[n - 2j + 1, Min[n - 2j + 1, m]], {j, 1, (Min[n, m] + 1)/2}]]];
    a[n_] := b[n, 0];
    Table[a[n], {n, 0, 45}] (* Jean-François Alcover, Mar 03 2024, after Alois P. Heinz *)
  • PARI
    my(N=44, x='x+O('x^N)); Vec(1+sum(n=1, N, x^(2*n-1)/(1-sum(k=1, n, x^(2*k-1)))))

Formula

G.f.: 1 + Sum_{n>=1} x^(2*n-1)/(1 - Sum_{k=1..n} x^(2*k-1) ).