A368835 Number of unlabeled n-edge loop-graphs with at most n vertices such that it is not possible to choose a different vertex from each edge.
0, 0, 0, 1, 5, 23, 98, 394, 1560, 6181, 24655, 99701, 410513, 1725725, 7423757, 32729320, 148027044, 687188969, 3275077017, 16022239940, 80431483586, 414094461610, 2185052929580, 11808696690600, 65312048149993, 369408792148714, 2135111662435080, 12601466371445619
Offset: 0
Keywords
Examples
Non-isomorphic representatives of the a(4) = 5 loop-graphs: {{1,1},{2,2},{3,3},{1,2}} {{1,1},{2,2},{1,2},{1,3}} {{1,1},{2,2},{1,2},{3,4}} {{1,1},{2,2},{1,3},{2,3}} {{1,1},{1,2},{1,3},{2,3}}
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..50
Crossrefs
Without the choice condition we have A368598.
Programs
-
Mathematica
Table[Length[Union[sysnorm /@ Select[Subsets[Subsets[Range[n],{1,2}],{n}],Select[Tuples[#], UnsameQ@@#&]=={}&]]],{n,0,5}]
Formula
Extensions
a(8) onwards from Andrew Howroyd, Jan 14 2024