A137917
a(n) is the number of unlabeled graphs on n nodes whose components are unicyclic graphs.
Original entry on oeis.org
1, 0, 0, 1, 2, 5, 14, 35, 97, 264, 733, 2034, 5728, 16101, 45595, 129327, 368093, 1049520, 2999415, 8584857, 24612114, 70652441, 203075740, 584339171, 1683151508, 4852736072, 14003298194, 40441136815, 116880901512, 338040071375, 978314772989, 2833067885748, 8208952443400
Offset: 0
From _Gus Wiseman_, Jan 25 2024: (Start)
Representatives of the a(0) = 1 through a(5) = 5 simple graphs:
{} . . {12,13,23} {12,13,14,23} {12,13,14,15,23}
{12,13,24,34} {12,13,14,23,25}
{12,13,14,23,45}
{12,13,14,25,35}
{12,13,24,35,45}
(End)
A054548 counts graphs covering n vertices with k edges, with loops
A369199.
Cf.
A000088,
A000612,
A007716,
A014068,
A053530,
A116508,
A133686,
A140638,
A368601,
A369141,
A369146.
-
Needs["Combinatorica`"];
nn=30;s[n_,k_]:=s[n,k]=a[n+1-k]+If[n<2k,0,s[n-k,k]];a[1]=1;a[n_]:=a[n]=Sum[a[i]s[n-1,i]i,{i,1,n-1}]/(n-1);rt=Table[a[i],{i,1,nn}];c=Drop[Apply[Plus,Table[Take[CoefficientList[CycleIndex[DihedralGroup[n],s]/.Table[s[j]->Table[Sum[rt[[i]]x^(k*i),{i,1,nn}],{k,1,nn}][[j]],{j,1,nn}],x],nn],{n,3,nn}]],1];CoefficientList[Series[Product[1/(1-x^i)^c[[i]],{i,1,nn-1}],{x,0,nn}],x] (* Geoffrey Critzer, Oct 12 2012, after code given by Robert A. Russell in A000081 *)
brute[m_]:=First[Sort[Table[Sort[Sort/@(m/.Rule@@@Table[{(Union@@m)[[i]],p[[i]]},{i,Length[p]}])],{p,Permutations[Range[Length[Union@@m]]]}]]];
Table[Length[Union[brute/@Select[Subsets[Subsets[Range[n],{2}],{n}],Select[Tuples[#],UnsameQ@@#&]!={}&]]],{n,0,5}] (* Gus Wiseman, Jan 25 2024 *)
A333331
Number of integer points in the convex hull in R^n of parking functions of length n.
Original entry on oeis.org
1, 3, 17, 144, 1623, 22804, 383415, 7501422
Offset: 1
For n=2 the parking functions are (1,1), (1,2), (2,1). They are the only integer points in their convex hull. For n=3, in addition to the 16 parking functions, there is the additional point (2,2,2).
- R. P. Stanley (Proposer), Problem 12191, Amer. Math. Monthly, 127:6 (2020), 563.
All of the following relative references pertain to the conjecture:
The version without the choice condition is
A014068, covering
A368597.
For any number of edges of any positive size we have
A367902.
Allowing edges of any positive size gives
A368601, complement
A368600.
Counting by singletons gives
A368924.
A368596
Number of n-element sets of singletons or pairs of distinct elements of {1..n}, or loop graphs with n edges, such that it is not possible to choose a different element from each.
Original entry on oeis.org
0, 0, 0, 3, 66, 1380, 31460, 800625, 22758918, 718821852, 25057509036, 957657379437, 39878893266795, 1799220308202603, 87502582432459584, 4566246347310609247, 254625879822078742956, 15115640124974801925030, 952050565540607423524658, 63425827673509972464868323
Offset: 0
The a(3) = 3 set-systems:
{{1},{2},{1,2}}
{{1},{3},{1,3}}
{{2},{3},{2,3}}
The version without the choice condition is
A014068, covering
A368597.
The complement appears to be
A333331.
For covering pairs we have
A367868.
Allowing edges of any positive size gives
A368600, any length
A367903.
A000085 counts set partitions into singletons or pairs.
A100861 counts set partitions into singletons or pairs by number of pairs.
A111924 counts set partitions into singletons or pairs by length.
Cf.
A000272,
A000666,
A057500,
A129271,
A133686,
A367769,
A367863,
A367867,
A367869,
A367901,
A367907,
A368097,
A369199.
-
Table[Length[Select[Subsets[Subsets[Range[n],{1,2}], {n}],Length[Select[Tuples[#],UnsameQ@@#&]]==0&]],{n,0,5}]
A368984
Number of graphs with loops (symmetric relations) on n unlabeled vertices in which each connected component has an equal number of vertices and edges.
Original entry on oeis.org
1, 1, 2, 5, 12, 29, 75, 191, 504, 1339, 3610, 9800, 26881, 74118, 205706, 573514, 1606107, 4513830, 12727944, 35989960, 102026638, 289877828, 825273050, 2353794251, 6724468631, 19239746730, 55123700591, 158133959239, 454168562921, 1305796834570, 3758088009136
Offset: 0
Representatives of the a(3) = 5 graphs are:
{{1,2}, {1,3}, {2,3}},
{{1}, {1,2}, {1,3}},
{{1}, {1,2}, {2,3}},
{{1}, {2}, {2,3}},
{{1}, {2}, {3}}.
The graph with 4 vertices and edges {{1}, {2}, {1,2}, {3,4}} is included by A368599 but not by this sequence.
The case of a unique choice is
A000081.
The labeled version appears to be
A333331.
Cf.
A014068,
A057500,
A116508,
A129271,
A133686,
A367863,
A367869,
A367902,
A368597,
A368601,
A368836.
-
brute[m_]:=First[Sort[Table[Sort[Sort/@(m/.Rule@@@Table[{(Union@@m)[[i]],p[[i]]},{i,Length[p]}])],{p,Permutations[Range[Length[Union@@m]]]}]]];
Table[Length[Union[brute/@Select[Subsets[Subsets[Range[n],{1,2}],{n}],Length[Select[Tuples[#],UnsameQ@@#&]]!=0&]]],{n,0,5}] (* Gus Wiseman, Jan 25 2024 *)
A369146
Number of unlabeled loop-graphs with up to n vertices such that it is not possible to choose a different vertex from each edge (non-choosable).
Original entry on oeis.org
0, 0, 1, 8, 60, 471, 4911, 78797, 2207405, 113740613, 10926218807, 1956363413115, 652335084532025, 405402273420833338, 470568642161119515627, 1023063423471189429817807, 4178849203082023236054797465, 32168008290073542372004072630072, 468053896898117580623237189882068990
Offset: 0
The a(0) = 0 through a(3) = 8 loop-graphs (loops shown as singletons):
. . {{1},{2},{1,2}} {{1},{2},{1,2}}
{{1},{2},{3},{1,2}}
{{1},{2},{1,2},{1,3}}
{{1},{2},{1,3},{2,3}}
{{1},{1,2},{1,3},{2,3}}
{{1},{2},{3},{1,2},{1,3}}
{{1},{2},{1,2},{1,3},{2,3}}
{{1},{2},{3},{1,2},{1,3},{2,3}}
Without the choice condition we have
A000666, labeled
A006125 (shifted).
-
brute[m_]:=First[Sort[Table[Sort[Sort /@ (m/.Rule@@@Table[{(Union@@m)[[i]],p[[i]]}, {i,Length[p]}])], {p,Permutations[Range[Length[Union@@m]]]}]]];
Table[Length[Union[brute /@ Select[Subsets[Subsets[Range[n],{1,2}]], Select[Tuples[#],UnsameQ@@#&]=={}&]]],{n,0,4}]
A368924
Triangle read by rows where T(n,k) is the number of labeled loop-graphs on n vertices with k loops and n-k non-loops such that it is possible to choose a different vertex from each edge.
Original entry on oeis.org
1, 0, 1, 0, 2, 1, 1, 9, 6, 1, 15, 68, 48, 12, 1, 222, 720, 510, 150, 20, 1, 3670, 9738, 6825, 2180, 360, 30, 1, 68820, 159628, 110334, 36960, 6895, 735, 42, 1, 1456875, 3067320, 2090760, 721560, 145530, 17976, 1344, 56, 1, 34506640, 67512798, 45422928, 15989232, 3402756, 463680, 40908, 2268, 72, 1
Offset: 0
Triangle begins:
1
0 1
0 2 1
1 9 6 1
15 68 48 12 1
222 720 510 150 20 1
3670 9738 6825 2180 360 30 1
68820 159628 110334 36960 6895 735 42 1
Row n = 3 counts the following loop-graphs:
{{1,2},{1,3},{2,3}} {{1},{1,2},{1,3}} {{1},{2},{1,3}} {{1},{2},{3}}
{{1},{1,2},{2,3}} {{1},{2},{2,3}}
{{1},{1,3},{2,3}} {{1},{3},{1,2}}
{{2},{1,2},{1,3}} {{1},{3},{2,3}}
{{2},{1,2},{2,3}} {{2},{3},{1,2}}
{{2},{1,3},{2,3}} {{2},{3},{1,3}}
{{3},{1,2},{1,3}}
{{3},{1,2},{2,3}}
{{3},{1,3},{2,3}}
Cf.
A000169,
A057500,
A062740,
A129271,
A133686,
A322661,
A367869,
A367902,
A368601,
A368835,
A368836,
A368927.
-
Table[Length[Select[Subsets[Subsets[Range[n],{1,2}],{n}], Count[#,{_}]==k&&Length[Select[Tuples[#], UnsameQ@@#&]]!=0&]],{n,0,5},{k,0,n}]
-
T(n)={my(t=-lambertw(-x + O(x*x^n))); [Vecrev(p) | p <- Vec(serlaplace(exp(-log(1-t)/2 - t/2 + t*y - t^2/4)))]}
{ my(A=T(8)); for(i=1, #A, print(A[i])) } \\ Andrew Howroyd, Jan 14 2024
A369145
Number of unlabeled loop-graphs with up to n vertices such that it is possible to choose a different vertex from each edge (choosable).
Original entry on oeis.org
1, 2, 5, 12, 30, 73, 185, 467, 1207, 3147, 8329, 22245, 60071, 163462, 448277, 1236913, 3432327, 9569352, 26792706, 75288346, 212249873, 600069431, 1700826842, 4831722294, 13754016792, 39224295915, 112048279650, 320563736148, 918388655873, 2634460759783, 7566000947867
Offset: 0
The a(0) = 1 through a(3) = 12 loop-graphs (loops shown as singletons):
{} {} {} {}
{{1}} {{1}} {{1}}
{{1,2}} {{1,2}}
{{1},{2}} {{1},{2}}
{{1},{1,2}} {{1},{1,2}}
{{1},{2,3}}
{{1,2},{1,3}}
{{1},{2},{3}}
{{1},{2},{1,3}}
{{1},{1,2},{1,3}}
{{1},{1,2},{2,3}}
{{1,2},{1,3},{2,3}}
Without the choice condition we get
A000666, labeled
A006125 (shifted left).
The complement for exactly n edges and no loops is
A369201, labeled
A369143.
A054548 counts graphs covering n vertices with k edges, with loops
A369199.
-
brute[m_]:=First[Sort[Table[Sort[Sort /@ (m/.Rule@@@Table[{(Union@@m)[[i]],p[[i]]}, {i,Length[p]}])], {p,Permutations[Range[Length[Union@@m]]]}]]];
Table[Length[Union[brute /@ Select[Subsets[Subsets[Range[n],{1,2}]], Length[Select[Tuples[#], UnsameQ@@#&]]!=0&]]],{n,0,4}]
A369143
Number of labeled simple graphs with n edges and n vertices such that it is not possible to choose a different vertex from each edge (non-choosable).
Original entry on oeis.org
0, 0, 0, 0, 0, 30, 1335, 47460, 1651230, 59636640, 2284113762, 93498908580, 4099070635935, 192365988161490, 9646654985111430, 515736895712230192, 29321225548502776980, 1768139644819077541440, 112805126206185257070660, 7595507651522103787077270, 538504704005397535690160274
Offset: 0
The term a(5) = 30 counts all permutations of the graph {{1,2},{1,3},{1,4},{2,3},{2,4}}.
The version without the choice condition is
A116508, covering
A367863.
-
Table[Length[Select[Subsets[Subsets[Range[n],{2}], {n}],Length[Select[Tuples[#],UnsameQ@@#&]]==0&]],{n,0,5}]
A369144
Number of labeled simple graphs with n edges covering n vertices such that it is not possible to choose a different vertex from each edge (non-choosable).
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 90, 4935, 200970, 7636860, 291089610, 11459170800, 471932476290, 20447369179380, 933942958593645, 44981469288560805, 2282792616992648670, 121924195590795244920, 6843305987751060036720, 403003907531795513467260, 24861219342100679072572470
Offset: 0
The term a(6) = 90 counts all permutations of the (non-connected) graph {{1,2},{1,3},{1,4},{2,3},{2,4},{5,6}}.
The covering complement is counted by
A137916.
Without the choice condition we have
A367863, covering case of
A116508.
This is the covering case of
A369143.
-
Table[Length[Select[Subsets[Subsets[Range[n],{2}], {n}],Union@@#==Range[n]&&Length[Select[Tuples[#], UnsameQ@@#&]]==0&]],{n,0,6}]
A369147
Number of unlabeled loop-graphs covering n vertices such that it is not possible to choose a different vertex from each edge (non-choosable).
Original entry on oeis.org
0, 0, 1, 7, 52, 411, 4440, 73886, 2128608, 111533208, 10812478194, 1945437194308, 650378721118910, 404749938336301313, 470163239887698682289, 1022592854829028310302180, 4177826139658552046624979658, 32163829440870460348768017832607, 468021728889827507080865185809438918
Offset: 0
The a(0) = 0 through a(3) = 7 loop-graphs (loops shown as singletons):
. . {{1},{2},{1,2}} {{1},{2},{3},{1,2}}
{{1},{2},{1,2},{1,3}}
{{1},{2},{1,3},{2,3}}
{{1},{1,2},{1,3},{2,3}}
{{1},{2},{3},{1,2},{1,3}}
{{1},{2},{1,2},{1,3},{2,3}}
{{1},{2},{3},{1,2},{1,3},{2,3}}
The complement for exactly n edges is
A368984, labeled
A333331 (maybe).
This is the covering case of
A369146.
Cf.
A000088,
A000612,
A005703,
A055621,
A062740,
A134964,
A137917,
A140638,
A367868,
A368835,
A369199.
-
brute[m_]:=First[Sort[Table[Sort[Sort /@ (m/.Rule@@@Table[{(Union@@m)[[i]],p[[i]]}, {i,Length[p]}])],{p,Permutations[Range[Length[Union@@m]]]}]]];
Table[Length[Union[brute /@ Select[Subsets[Subsets[Range[n],{1,2}]], Union@@#==Range[n] && Length[Select[Tuples[#],UnsameQ@@#&]]==0&]]],{n,0,4}]
Showing 1-10 of 14 results.
Comments