cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 28 results. Next

A005195 Number of forests with n unlabeled nodes.

Original entry on oeis.org

1, 1, 2, 3, 6, 10, 20, 37, 76, 153, 329, 710, 1601, 3658, 8599, 20514, 49905, 122963, 307199, 775529, 1977878, 5086638, 13184156, 34402932, 90328674, 238474986, 632775648, 1686705630, 4514955632, 12132227370, 32717113805, 88519867048, 240235675303
Offset: 0

Views

Author

Keywords

Comments

Same as "Number of forests with n nodes that are perfect graphs" [see Hougardy]. - N. J. A. Sloane, Dec 04 2015
Number of unlabeled acyclic graphs on n vertices. The labeled version is A001858. The covering case is A144958, connected A000055. - Gus Wiseman, Apr 29 2024

Examples

			From _Gus Wiseman_, Apr 29 2024: (Start)
Edge-sets of non-isomorphic representatives of the a(0) = 1 through a(5) = 10 forests:
  {}  {}  {}    {}       {}          {}
          {12}  {12}     {12}        {12}
                {13,23}  {12,34}     {12,34}
                         {13,23}     {13,23}
                         {13,24,34}  {12,35,45}
                         {14,24,34}  {13,24,34}
                                     {14,24,34}
                                     {13,24,35,45}
                                     {14,25,35,45}
                                     {15,25,35,45}
(End)
		

References

  • F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, pp. 58-59.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A095133 (by number of trees), A136605 (by number of edges).
A diagonal of A144215.
The connected case is A000055.
The labeled version is A001858.
The covering case is A144958, labeled A105784.
For triangles instead of cycles we have A006785, covering A372169.
Unique cycle: A236570 (labeled A372193), covering A372191 (labeled A372195).
A006125 counts simple graphs, unlabeled A000088.
A006129 counts covering graphs, unlabeled A002494.

Programs

  • Mathematica
    EulerTransform[ seq_List ] := With[{m = Length[seq]}, CoefficientList[ Series[ Times @@ (1/(1 - x^Range[m])^seq), {x, 0, m}], x]];
    b[n_] := b[n] = If[n <= 1, n, Sum[ Sum[ d*b[d], {d, Divisors[j]}]*b[n - j], {j, 1, n - 1}]/(n - 1)];
    a55[n_] := a55[n] = If[n == 0, 1, b[n] - (Sum[ b[k]*b[n - k], {k, 0, n}] - If[Mod[n, 2] == 0, b[n/2], 0])/2]; A000055 = Table[ a55[n], {n, 1, 31}]; EulerTransform[ A000055 ] (* Jean-François Alcover, Mar 15 2012 *)

Formula

Euler transform of A000055: Product_{n>0} (1-x^n)^(-A000055(n)). a(n) = 1/n*Sum_{k=1..n} b(k)*a(n-k), where b(k) = Sum_{d divides k} d*A000055(d). - Vladeta Jovovic, Sep 05 2002
G.f.: exp(sum_{k>0} B(x^k)/k ), where B(x) = x + x^2 + x^3 + 2*x^4 + 3*x^5 + 6*x^6 + 11*x^7 + ... = C(x)-1 and C is the g.f. for A000055.
a(n) ~ c * d^n / n^(5/2), where d = A051491 = 2.9557652856519949747148..., c = 1.023158422... . - Vaclav Kotesovec, Nov 16 2014
First differences are A144958. - Gus Wiseman, Apr 29 2024

Extensions

More terms from Vladeta Jovovic, Sep 05 2002

A001429 Number of n-node connected unicyclic graphs.

Original entry on oeis.org

1, 2, 5, 13, 33, 89, 240, 657, 1806, 5026, 13999, 39260, 110381, 311465, 880840, 2497405, 7093751, 20187313, 57537552, 164235501, 469406091, 1343268050, 3848223585, 11035981711, 31679671920, 91021354454, 261741776369, 753265624291, 2169441973139, 6252511838796
Offset: 3

Views

Author

Keywords

Comments

Also unlabeled connected simple graphs with n vertices and n edges. The labeled version is A057500. - Gus Wiseman, Feb 12 2024

Examples

			From _Gus Wiseman_, Feb 12 2024: (Start)
Representatives of the a(3) = 1 through a(6) = 13 simple graphs:
  {12,13,23}  {12,13,14,23}  {12,13,14,15,23}  {12,13,14,15,16,23}
              {12,13,24,34}  {12,13,14,23,25}  {12,13,14,15,23,26}
                             {12,13,14,23,45}  {12,13,14,15,23,46}
                             {12,13,14,25,35}  {12,13,14,15,26,36}
                             {12,13,24,35,45}  {12,13,14,23,25,36}
                                               {12,13,14,23,25,46}
                                               {12,13,14,23,45,46}
                                               {12,13,14,23,45,56}
                                               {12,13,14,25,26,35}
                                               {12,13,14,25,35,46}
                                               {12,13,14,25,35,56}
                                               {12,13,14,25,36,56}
                                               {12,13,24,35,46,56}
(End)
		

References

  • R. C. Read and R. J. Wilson, An Atlas of Graphs, Oxford, 1998.
  • J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 150.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

For at most one cycle we have A005703, labeled A129271, complement A140637.
Next-to-main diagonal of A054924. Cf. A000055.
The labeled version is A057500, connected case of A137916.
This is the connected case of A137917 and A236570.
Row k = 1 of A137918.
The version with loops is A368983.
A001349 counts unlabeled connected graphs.
A001434 and A006649 count unlabeled graphs with # vertices = # edges.
A006129 counts covering graphs, unlabeled A002494.

Programs

  • Mathematica
    Needs["Combinatorica`"];
    nn=30;s[n_,k_]:=s[n,k]=a[n+1-k]+If[n<2k,0,s[n-k,k]];a[1]=1;a[n_]:=a[n]=Sum[a[i]s[n-1,i]i,{i,1,n-1}]/(n-1);rt=Table[a[i],{i,1,nn}];Apply[Plus,Table[Take[CoefficientList[CycleIndex[DihedralGroup[n],s]/.Table[s[j]->Table[Sum[rt[[i]]x^(k*i),{i,1,nn}],{k,1,nn}][[j]],{j,1,nn}],x],nn],{n,3,nn}]]  (* Geoffrey Critzer, Oct 12 2012, after code given by Robert A. Russell in A000081 *)
    (* Second program: *)
    TreeGf[nn_] := Module[{A}, A = Table[1, {nn}]; For[n = 1, n <= nn 1, n++, A[[n + 1]] = 1/n * Sum[Sum[ d*A[[d]], {d, Divisors[k]}]*A[[n - k + 1]], {k, 1, n}]]; x A.x^Range[0, nn-1]];
    seq[n_] := Module[{t, g}, If[n < 3, {}, t = TreeGf[n - 2]; g[e_] := Normal[t + O[x]^(Quotient[n, e]+1)] /. x -> x^e  + O[x]^(n+1); Sum[Sum[ EulerPhi[d]*g[d]^(k/d), {d, Divisors[k]}]/k + If[OddQ[k], g[1]* g[2]^Quotient[k, 2], (g[1]^2 + g[2])*g[2]^(k/2-1)/2], {k, 3, n}]]/2 // Drop[CoefficientList[#, x], 3]&];
    seq[32] (* Jean-François Alcover, Oct 05 2019, after Andrew Howroyd's PARI code *)
  • PARI
    \\ TreeGf gives gf of A000081
    TreeGf(N)={my(A=vector(N, j, 1)); for (n=1, N-1, A[n+1] = 1/n * sum(k=1, n, sumdiv(k, d, d*A[d]) * A[n-k+1] ) ); x*Ser(A)}
    seq(n)={if(n<3, [], my(t=TreeGf(n-2)); my(g(e)=subst(t + O(x*x^(n\e)),x,x^e) + O(x*x^n)); Vec(sum(k=3, n, sumdiv(k, d, eulerphi(d)*g(d)^(k/d))/k + if(k%2, g(1)*g(2)^(k\2), (g(1)^2+g(2))*g(2)^(k/2-1)/2))/2))} \\ Andrew Howroyd, May 05 2018

Formula

a(n) = A068051(n) - A027852(n) - A000081(n).

Extensions

More terms from Ronald C. Read
a(27) corrected, more terms, formula from Christian G. Bower, Feb 12 2002
Edited by Charles R Greathouse IV, Oct 05 2009
Terms a(30) and beyond from Andrew Howroyd, May 05 2018

A137916 Number of n-node labeled graphs whose components are unicyclic graphs.

Original entry on oeis.org

1, 0, 0, 1, 15, 222, 3670, 68820, 1456875, 34506640, 906073524, 26154657270, 823808845585, 28129686128940, 1035350305641990, 40871383866109888, 1722832666898627865, 77242791668604946560, 3670690919234354407000, 184312149879830557190940, 9751080154504005703189791
Offset: 0

Views

Author

Washington Bomfim, Feb 22 2008

Keywords

Comments

Also the number of labeled simple graphs with n vertices and n edges such that it is possible to choose a different vertex from each edge. The version without the choice condition is A116508, covering A367863. - Gus Wiseman, Jan 25 2024

Examples

			a(6) = 3670 because A057500(6) = 3660 and two triangles can be labeled in 10 ways.
From _Gus Wiseman_, Jan 25 2024: (Start)
The a(0) = 1 through a(4) = 15 simple graphs:
  {}  .  .  {12,13,23}  {12,13,14,23}
                        {12,13,14,24}
                        {12,13,14,34}
                        {12,13,23,24}
                        {12,13,23,34}
                        {12,13,24,34}
                        {12,14,23,24}
                        {12,14,23,34}
                        {12,14,24,34}
                        {12,23,24,34}
                        {13,14,23,24}
                        {13,14,23,34}
                        {13,14,24,34}
                        {13,23,24,34}
                        {14,23,24,34}
(End)
		

References

  • V. F. Kolchin, Random Graphs. Encyclopedia of Mathematics and Its Applications 53. Cambridge Univ. Press, Cambridge, 1999.

Crossrefs

The connected case is A057500.
Row sums of A106239.
The unlabeled version is A137917.
Diagonal of A144228.
The version with loops appears to be A333331, unlabeled A368984.
Column k = 0 of A368924.
The complement is counted by A369143, unlabeled A369201, covering A369144.
A006125 counts simple graphs, unlabeled A000088.
A006129 counts covering graphs, unlabeled A002494.
A054548 counts graphs covering n vertices with k edges, with loops A369199.
A133686 counts choosable simple graphs, covering A367869.
A140637 counts unlabeled non-choosable graphs, covering A369202.
A367867 counts non-choosable graphs, covering A367868.

Programs

  • Maple
    cy:= proc(n) option remember;
           binomial(n-1, 2)*add((n-3)!/(n-2-t)!*n^(n-2-t), t=1..n-2)
         end:
    T:= proc(n,k) option remember; `if`(k=0, 1, `if`(k<0 or n T(n,n):
    seq(a(n), n=0..30);  # Alois P. Heinz, Sep 15 2008
  • Mathematica
    nn = 20; t = Sum[n^(n - 1) x^n/n!, {n, 1, nn}]; Drop[Range[0, nn]! CoefficientList[Series[Exp[Log[1/(1 - t)]/2 - t/2 - t^2/4], {x, 0, nn}], x], 1] (* Geoffrey Critzer, Jan 24 2012 *)
    Table[Length[Select[Subsets[Subsets[Range[n],{2}],{n}],Length[Select[Tuples[#],UnsameQ@@#&]]!=0&]],{n,0,5}] (* Gus Wiseman, Jan 25 2024 *)
  • PARI
    A057500(p) = (p-1)! * p^p /2 * sum(k = 3,p, 1/(p^k*(p-k)!)); /* Vladeta Jovovic, A057500. */
    F(n,N) = { my(s = 0, K, D, Mc); forpart(P = n, D = Set(P); K = vector(#D);
    for(i=1, #D, K[i] = #select(x->x == D[i], Vec(P)));
    Mc = n!/prod(i=1,#D, K[i]!);
    s += Mc * prod(i = 1, #D, A057500(D[i])^K[i] / ( D[i]!^K[i])) , [3, n], [N, N]); s };
    a(n)= {my(N); sum(N = 1, n, F(n,N))};
    
  • PARI
    seq(n)={my(w=lambertw(-x+O(x*x^n))); Vec(serlaplace(exp(-log(1+w)/2 + w/2 - w^2/4)))} \\ Andrew Howroyd, May 18 2021

Formula

a(n) = Sum_{N = 1..n} ((n!/N!) * Sum_{n_1 + n_2 + ... + n_N = n} Product_{i = 1..N} ( A057500(n_i) / n_i! ) ). [V. F. Kolchin p. 31, (1.4.2)] replacing numerator terms n_i^(n_i-2) by A057500(n_i).
a(n) = A144228(n,n). - Alois P. Heinz, Sep 15 2008
E.g.f.: exp(B(T(x))) where B(x) = (log(1/(1-x))-x-x^2/2)/2 and T(x) is the e.g.f. for A000169 (labeled rooted trees). - Geoffrey Critzer, Jan 24 2012
a(n) ~ 2^(-1/4)*exp(-3/4)*GAMMA(3/4)*n^(n-1/4)/sqrt(Pi) * (1-7*Pi/(12*GAMMA(3/4)^2*sqrt(n))). - Vaclav Kotesovec, Aug 16 2013
E.g.f.: exp(B(x)) where B(x) is the e.g.f. of A057500. - Andrew Howroyd, May 18 2021

Extensions

a(0)=1 prepended by Andrew Howroyd, May 18 2021

A134964 Number of unlabeled n-node simple graphs with at most one cycle in each connected component.

Original entry on oeis.org

1, 1, 2, 4, 9, 19, 46, 108, 273, 696, 1836, 4896, 13323, 36541, 101323, 282693, 793697, 2237982, 6335978, 17992622, 51235887, 146228734, 418181860, 1197972026, 3437159492, 9875198568, 28407202891, 81807809714, 235831978115, 680478488927, 1965160731704
Offset: 0

Views

Author

Washington Bomfim, May 14 2008

Keywords

Comments

a(n) is the number of pseudoforests on n nodes. - Eric W. Weisstein, Jun 11 2012

Crossrefs

Cf. A005703 (number of pseudotrees), A137917 (number of maximal pseudoforests).

Programs

  • Mathematica
    Needs["Combinatorica`"];
    nn=30;s[n_,k_]:=s[n,k]=a[n+1-k]+If[n<2k,0,s[n-k,k]];a[1]=1;a[n_]:=a[n]=Sum[a[i]s[n-1,i]i,{i,1,n-1}]/(n-1);rt=Table[a[i],{i,1,nn}];cu=Drop[Apply[Plus,Table[Take[CoefficientList[CycleIndex[DihedralGroup[n],s]/.Table[s[j]->Table[Sum[rt[[i]]x^(k*i),{i,1,nn}],{k,1,nn}][[j]],{j,1,nn}],x],nn],{n,3,nn}]],1];t[n_,k_]:=t[n,k]=b[n+1-k]+If[n<2k,0,t[n-k,k]];b[1]=1;b[n_]:=b[n]=Sum[b[i]t[n-1,i]i,{i,1,n-1}]/(n-1);ft=Table[b[i]-Sum[b[j]b[i-j],{j,1,i/2}]+If[OddQ[i],0,b[i/2](b[i/2]+1)/2],{i,1,nn}];
    CoefficientList[Series[Product[1/(1-x^i)^(cu[[i]]+ft[[i]]),{i,1,nn-1}],{x,0,nn}],x]  (* Geoffrey Critzer, Oct 13 2012, after codes given by Robert A. Russell in A134964 and A000055 *)

Formula

a(0) = 1, for n >= 1, a(n) = Sum_{1*j_1 + 2*j_2 + ··· = n} ( Product_{i = 1..n} binomial(A005703(i+1) + j_i -1, j_i) ) [(4.27) of [F. Ruskey] with n replaced by n+1, and a_i replaced by A005703(i+1)].
Euler transform of A001429 + A000055. - Geoffrey Critzer, Oct 13 2012

Extensions

Edited by Washington Bomfim, Jun 27 2012
Terms a(29) and beyond from Andrew Howroyd, May 16 2021

A368927 Number of labeled loop-graphs covering a subset of {1..n} such that it is possible to choose a different vertex from each edge.

Original entry on oeis.org

1, 2, 7, 39, 314, 3374, 45630, 744917, 14245978, 312182262, 7708544246, 211688132465, 6397720048692, 210975024924386, 7537162523676076, 289952739051570639, 11949100971787370300, 525142845422124145682, 24515591201199758681892, 1211486045654016217202663
Offset: 0

Views

Author

Gus Wiseman, Jan 15 2024

Keywords

Comments

These are loop-graphs where every connected component has a number of edges less than or equal to the number of vertices. Also loop-graphs with at most one cycle (unicyclic) in each connected component.

Examples

			The a(0) = 1 through a(2) = 7 loop-graphs (loops shown as singletons):
  {}  {}     {}
      {{1}}  {{1}}
             {{2}}
             {{1,2}}
             {{1},{2}}
             {{1},{1,2}}
             {{2},{1,2}}
		

Crossrefs

Without the choice condition we have A006125.
The case of a unique choice is A088957, unlabeled A087803.
The case without loops is A133686, complement A367867, covering A367869.
For exactly n edges and no loops we have A137916, unlabeled A137917.
For exactly n edges we have A333331 (maybe), complement A368596.
For edges of any positive size we have A367902, complement A367903.
The covering case is A369140, complement A369142.
The complement is counted by A369141.
The complement for n edges and no loops is A369143, covering A369144.
The unlabeled version is A369145, complement A369146.
A000085, A100861, A111924 count set partitions into singletons or pairs.
A006129 counts covering graphs, unlabeled A002494.
A322661 counts labeled covering loop-graphs, connected A062740.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Subsets[Range[n],{1,2}]], Length[Select[Tuples[#],UnsameQ@@#&]]!=0&]],{n,0,5}]
  • PARI
    seq(n)={my(t=-lambertw(-x + O(x*x^n))); Vec(serlaplace(exp(3*t/2 - 3*t^2/4)/sqrt(1-t) ))} \\ Andrew Howroyd, Feb 02 2024

Formula

Binomial transform of A369140.
Exponential transform of A369197 with A369197(1) = 2.
E.g.f.: exp(3*T(x)/2 - 3*T(x)^2/4)/sqrt(1-T(x)), where T(x) is the e.g.f. of A000169. - Andrew Howroyd, Feb 02 2024

Extensions

a(7) onwards from Andrew Howroyd, Feb 02 2024

A144958 Number of unlabeled acyclic graphs covering n vertices.

Original entry on oeis.org

1, 0, 1, 1, 3, 4, 10, 17, 39, 77, 176, 381, 891, 2057, 4941, 11915, 29391, 73058, 184236, 468330, 1202349, 3108760, 8097518, 21218776, 55925742, 148146312, 394300662, 1053929982, 2828250002, 7617271738, 20584886435, 55802753243
Offset: 0

Views

Author

Washington Bomfim, Sep 27 2008

Keywords

Comments

a(n) is the number of forests with n unlabeled nodes without isolated vertices. This follows from the fact that for n>0 A005195(n-1) counts the forests with one or more isolated nodes.
The labeled version is A105784. The connected case is A000055. This is the covering case of A005195. - Gus Wiseman, Apr 29 2024

Examples

			From _Gus Wiseman_, Apr 29 2024: (Start)
Edge-sets of non-isomorphic representatives of the a(0) = 1 through a(5) = 4 forests:
  {}    .    {12}    {13,23}    {12,34}       {12,35,45}
                                {13,24,34}    {13,24,35,45}
                                {14,24,34}    {14,25,35,45}
                                              {15,25,35,45}
(End)
		

Crossrefs

The connected case is A000055.
This is the covering case of A005195, labeled A001858.
The labeled version is A105784.
For triangles instead of cycles we have A372169, non-covering A006785.
Unique cycle: A372191 (lab A372195), non-covering A236570 (lab A372193).
A006125 counts simple graphs, unlabeled A000088.
A006129 counts covering graphs, unlabeled A002494.

Programs

  • Mathematica
    brute[m_]:=First[Sort[Table[Sort[Sort/@(m/.Rule@@@Table[{i,p[[i]]},{i,Length[p]}])],{p,Permutations[Union@@m]}]]];
    cyc[y_]:=Select[Join@@Table[Select[Join@@Permutations/@Subsets[Union@@y,{k}],And@@Table[MemberQ[Sort/@y,Sort[{#[[i]],#[[If[i==k,1,i+1]]]}]],{i,k}]&],{k,3,Length[y]}],Min@@#==First[#]&];
    Table[Length[Union[Union[brute/@Select[Subsets[Subsets[Range[n],{2}]],Union@@#==Range[n]&&Length[cyc[#]]==0&]]]],{n,0,5}] (* Gus Wiseman, Apr 29 2024 *)
  • PARI
    EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)}
    TreeGf(N)={my(A=vector(N, j, 1)); for (n=1, N-1, A[n+1] = 1/n * sum(k=1, n, sumdiv(k, d, d*A[d]) * A[n-k+1] ) ); x*Ser(A)}
    seq(n)={my(t=TreeGf(n), v=EulerT(Vec(t - t^2/2 + subst(t,x,x^2)/2))); concat([1,0], vector(#v-1, i, v[i+1]-v[i]))} \\ Andrew Howroyd, Aug 01 2024

Formula

a(n) = A005195(n) - A005195(n-1).

Extensions

Name changed and 1 prepended by Gus Wiseman, Apr 29 2024.

A001434 Number of graphs with n nodes and n edges.

Original entry on oeis.org

1, 0, 0, 1, 2, 6, 21, 65, 221, 771, 2769, 10250, 39243, 154658, 628635, 2632420, 11353457, 50411413, 230341716, 1082481189, 5228952960, 25945377057, 132140242356, 690238318754, 3694876952577, 20252697246580, 113578669178222, 651178533855913, 3813856010041981
Offset: 0

Views

Author

Keywords

Comments

The labeled version is A116508. - Gus Wiseman, Feb 22 2024

Examples

			From _Gus Wiseman_, Feb 22 2024: (Start)
Representatives of the a(0) = 1 through a(5) = 6 graphs:
  {}  .  .  {12,13,23}  {12,13,14,23}  {12,13,14,15,23}
                        {12,13,24,34}  {12,13,14,23,24}
                                       {12,13,14,23,25}
                                       {12,13,14,23,45}
                                       {12,13,14,25,35}
                                       {12,13,24,35,45}
(End)
		

References

  • J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 146.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

The connected case is A001429, labeled A057500.
The covering case is A006649, labeled A367863.
Diagonal n = k of A008406.
The labeled version is A116508.
The version with loops is A368598, connected A368983.
Allowing up to n edges gives A370315, labeled A369192.
A000088 counts unlabeled graphs, labeled A006125.
A001349 counts unlabeled connected graphs, labeled A001187.
A002494 counts unlabeled covering graphs, labeled A006129.

Programs

  • Mathematica
    (* first do *) Needs["Combinatorica`"] (* then *) Table[ NumberOfGraphs[n, n], {n, 24}] (* Robert G. Wilson v, Mar 22 2011 *)
    brute[m_]:=First[Sort[Table[Sort[Sort /@ (m/.Rule@@@Table[{(Union@@m)[[i]],p[[i]]},{i,Length[p]}])], {p,Permutations[Range[Length[Union@@m]]]}]]];
    Table[Length[Union[brute /@ Subsets[Subsets[Range[n],{2}],{n}]]],{n,0,5}] (* Gus Wiseman, Feb 22 2024 *)
  • PARI
    a(n) = polcoef(G(n, O(x*x^n)), n) \\ G defined in A008406. - Andrew Howroyd, Feb 02 2024

Extensions

More terms from Vladeta Jovovic, Jan 07 2000
a(0)=1 prepended by Andrew Howroyd, Feb 02 2024

A263340 Triangle read by rows: T(n,k) is the number of graphs with n vertices containing k triangles.

Original entry on oeis.org

1, 1, 2, 3, 1, 7, 2, 1, 0, 1, 14, 7, 5, 2, 3, 1, 0, 1, 0, 0, 1, 38, 23, 28, 14, 18, 9, 7, 5, 4, 1, 4, 1, 1, 1, 0, 0, 1, 0, 0, 0, 1, 107, 102, 141, 117, 123, 92, 80, 63, 49, 35, 35, 23, 15, 17, 10, 4, 9, 5, 2, 3, 3, 2, 2, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1
Offset: 0

Views

Author

Christian Stump, Oct 15 2015

Keywords

Comments

Row sums give A000088.
First column is A006785.
Row lengths are 1 + binomial(n,3). - Geoffrey Critzer, Apr 13 2017

Examples

			Triangle begins:
  1;
  1;
  2;
  3,1;
  7,2,1,0,1;
  14,7,5,2,3,1,0,1,0,0,1;
  38,23,28,14,18,9,7,5,4,1,4,1,1,1,0,0,1,0,0,0,1;
  ...
		

Crossrefs

Row sums are A000088, labeled A006125.
Column k = 0 is A006785 (lab A213434), covering A372169 (lab A372168).
Counting edges gives A008406 (lab A084546), covering A370167 (lab A054548).
Row lengths are A050407.
The labeled version is A372170, covering A372167.
The covering case is A372173, sums A002494, labeled A006129.
Column k = 1 is A372194 (lab A372172), covering A372174 (lab A372171).
A001858 counts acyclic graphs, unlabeled A005195.
A372176 counts labeled graphs by directed cycles, covering A372175.

Programs

  • Mathematica
    Table[Table[Count[Table[Tr[MatrixPower[AdjacencyMatrix[GraphData[{n, i}]], 3]]/6, {i, 1, NumberOfGraphs[n]}], k], {k, 0, Binomial[n, 3]}], {n, 1, 7}] (* Geoffrey Critzer, Apr 13 2017 *)

Extensions

Row 7 from Geoffrey Critzer, Apr 13 2017
T(0,0)=1 prepended by Alois P. Heinz, Apr 13 2017

A368984 Number of graphs with loops (symmetric relations) on n unlabeled vertices in which each connected component has an equal number of vertices and edges.

Original entry on oeis.org

1, 1, 2, 5, 12, 29, 75, 191, 504, 1339, 3610, 9800, 26881, 74118, 205706, 573514, 1606107, 4513830, 12727944, 35989960, 102026638, 289877828, 825273050, 2353794251, 6724468631, 19239746730, 55123700591, 158133959239, 454168562921, 1305796834570, 3758088009136
Offset: 0

Views

Author

Andrew Howroyd, Jan 11 2024

Keywords

Comments

The graphs considered here can have loops but not parallel edges.
Also the number of unlabeled loop-graphs with n edges and n vertices such that it is possible to choose a different vertex from each edge. - Gus Wiseman, Jan 25 2024

Examples

			Representatives of the a(3) = 5 graphs are:
   {{1,2}, {1,3}, {2,3}},
   {{1}, {1,2}, {1,3}},
   {{1}, {1,2}, {2,3}},
   {{1}, {2}, {2,3}},
   {{1}, {2}, {3}}.
The graph with 4 vertices and edges {{1}, {2}, {1,2}, {3,4}} is included by A368599 but not by this sequence.
		

Crossrefs

The case of a unique choice is A000081.
Without loops we have A137917, labeled A137916.
The labeled version appears to be A333331.
Without the choice condition we have A368598, covering A368599.
The complement is counted by A368835, labeled A368596 (covering A368730).
Row sums of A368926, labeled A368924.
The connected case is A368983.
A000085, A100861, A111924 count set partitions into singletons or pairs.
A000666 counts unlabeled loop-graphs, covering A322700.
A006125 counts simple graphs, unlabeled A000088.
A006129 counts covering graphs, connected A001187, unlabeled A002494.
A322661 counts labeled covering loop-graphs, connected A062740.

Programs

  • Mathematica
    brute[m_]:=First[Sort[Table[Sort[Sort/@(m/.Rule@@@Table[{(Union@@m)[[i]],p[[i]]},{i,Length[p]}])],{p,Permutations[Range[Length[Union@@m]]]}]]];
    Table[Length[Union[brute/@Select[Subsets[Subsets[Range[n],{1,2}],{n}],Length[Select[Tuples[#],UnsameQ@@#&]]!=0&]]],{n,0,5}] (* Gus Wiseman, Jan 25 2024 *)

Formula

Euler transform of A368983.

A372191 Number of unlabeled simple graphs covering n vertices with a unique undirected cycle of length > 2.

Original entry on oeis.org

0, 0, 0, 1, 2, 6, 16, 43, 117, 319, 875, 2409, 6692, 18614, 52099, 146186, 411720, 1162295, 3289994, 9330913, 26517036, 75481622, 215201178, 614398459, 1756392061, 5026955216, 14403488345, 41311616835, 118601561506, 340795908579, 980078195995
Offset: 0

Views

Author

Gus Wiseman, Apr 27 2024

Keywords

Comments

An undirected cycle in a graph is a sequence of distinct vertices, up to rotation and reversal, such that there are edges between all consecutive elements, including the last and the first.

Crossrefs

For no cycles we have A144958 (non-covering A005195), labeled A105784 (non-covering A001858).
Counting triangles instead of cycles gives A372174 (non-covering A372194), labeled A372171 (non-covering A372172).
The non-covering version is A236570, labeled A372193.
The labeled version is A372195, column k = 1 of A372175.
A002807 counts cycles in a complete graph.
A006125 counts graphs, unlabeled A000088.
A006129 counts covering graphs, unlabeled A002494.
A372167 counts graphs by triangles, non-covering A372170.
A372173 counts unlabeled graphs by triangles (non-covering A263340).
A372176 counts labeled graphs by directed cycles.

Formula

First differences of A236570.

Extensions

a(7) onwards from Andrew Howroyd, Jul 31 2024
Showing 1-10 of 28 results. Next