cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 15 results. Next

A008406 Triangle T(n,k) read by rows, giving number of graphs with n nodes (n >= 1) and k edges (0 <= k <= n(n-1)/2).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 2, 1, 1, 1, 1, 2, 4, 6, 6, 6, 4, 2, 1, 1, 1, 1, 2, 5, 9, 15, 21, 24, 24, 21, 15, 9, 5, 2, 1, 1, 1, 1, 2, 5, 10, 21, 41, 65, 97, 131, 148, 148, 131, 97, 65, 41, 21, 10, 5, 2, 1, 1, 1, 1, 2, 5, 11, 24, 56, 115, 221, 402, 663, 980, 1312, 1557, 1646, 1557
Offset: 1

Views

Author

N. J. A. Sloane, Mar 15 1996

Keywords

Comments

T(n,k)=1 for n>=2 with k=0, k=1, k=n*(n-1)/2-1 and k=n*(n-1)/2 (therefore the quadruple {1,1,1,1} marks the transition to the next sublist for a given number of vertices (n>2)). [Edited by Peter Munn, Mar 20 2021]

Examples

			Triangle begins:
1,
1,1,
1,1,1,1,
1,1,2,3,2,1,1, [graphs with 4 nodes and from 0 to 6 edges]
1,1,2,4,6,6,6,4,2,1,1,
1,1,2,5,9,15,21,24,24,21,15,9,5,2,1,1,
1,1,2,5,10,21,41,65,97,131,148,148,131,97,65,41,21,10,5,2,1,1,
...
		

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 264.
  • J. L. Gross and J. Yellen, eds., Handbook of Graph Theory, CRC Press, 2004; p. 519.
  • F. Harary, Graph Theory. Addison-Wesley, Reading, MA, 1969, p. 214.
  • F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 240.
  • J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 146.
  • R. W. Robinson, Numerical implementation of graph counting algorithms, AGRC Grant, Math. Dept., Univ. Newcastle, Australia, 1976.

Crossrefs

Row sums give A000088.
Cf. also A039735, A002905, A054924 (connected), A084546 (labeled graphs).
Row lengths: A000124; number of connected graphs for given number of vertices: A001349; number of graphs for given number of edges: A000664.
Cf. also A000055.

Programs

  • Maple
    seq(seq(GraphTheory:-NonIsomorphicGraphs(v,e),e=0..v*(v-1)/2),v=1..9); # Robert Israel, Dec 22 2015
  • Mathematica
    << Combinatorica`; Table[CoefficientList[GraphPolynomial[n, x], x], {n, 8}] // Flatten (* Eric W. Weisstein, Mar 20 2013 *)
    << Combinatorica`; Table[NumberOfGraphs[v, e], {v, 8}, {e, 0, Binomial[v, 2]}] // Flatten (* Eric W. Weisstein, May 17 2017 *)
    permcount[v_] := Module[{m=1, s=0, k=0, t}, For[i=1, i <= Length[v], i++, t = v[[i]]; k = If[i>1 && t == v[[i-1]], k+1, 1]; m *= t*k; s += t]; s!/m];
    edges[v_, t_] := Product[Product[g = GCD[v[[i]], v[[j]]]; t[v[[i]]*v[[j]]/ g]^g,{j, 1, i-1}], {i, 2, Length[v]}]*Product[c = v[[i]]; t[c]^Quotient[ c-1, 2]*If[OddQ[c], 1, t[c/2]], {i, 1, Length[v]}];
    row[n_] := Module[{s = 0}, Do[s += permcount[p]*edges[p, 1 + x^#&], {p, IntegerPartitions[n]}]; s/n!] // Expand // CoefficientList[#, x]&;
    Array[row, 8] // Flatten (* Jean-François Alcover, Jan 07 2021, after Andrew Howroyd *)
  • PARI
    permcount(v) = {my(m=1,s=0,k=0,t); for(i=1,#v,t=v[i]; k=if(i>1&&t==v[i-1],k+1,1); m*=t*k;s+=t); s!/m}
    edges(v,t) = {prod(i=2, #v, prod(j=1, i-1, my(g=gcd(v[i],v[j])); t(v[i]*v[j]/g)^g )) * prod(i=1, #v, my(c=v[i]); t(c)^((c-1)\2)*if(c%2, 1, t(c/2)))}
    G(n, A=0) = {my(s=0); forpart(p=n, s+=permcount(p)*edges(p, i->1+x^i+A)); s/n!}
    { for(n=1, 7, print(Vecrev(G(n)))) } \\ Andrew Howroyd, Oct 22 2019, updated  Jan 09 2024
  • Sage
    def T(n,k):
        return len(list(graphs(n, size=k)))
    # Ralf Stephan, May 30 2014
    

Formula

O.g.f. for n-th row: 1/n! Sum_g det(1-g z^2)/det(1-g z) where g runs through the natural matrix representation of the pair group A^2_n (for A^2_n see F. Harary and E. M. Palmer, Graphical Enumeration, page 83). - Leonid Bedratyuk, Sep 23 2014

Extensions

Additional comments from Arne Ring (arne.ring(AT)epost.de), Oct 03 2002
Text belonging in a different sequence deleted by Peter Munn, Mar 20 2021

A116508 a(n) = C( C(n,2), n).

Original entry on oeis.org

1, 0, 0, 1, 15, 252, 5005, 116280, 3108105, 94143280, 3190187286, 119653565850, 4922879481520, 220495674290430, 10682005290753420, 556608279578340080, 31044058215401404845, 1845382436487682488000, 116475817125419611477660, 7779819801401934344268210
Offset: 0

Views

Author

Christopher Hanusa (chanusa(AT)math.binghamton.edu), Mar 21 2006

Keywords

Comments

a(n) is the number of simple labeled graphs with n nodes and n edges. - Geoffrey Critzer, Nov 02 2014
These graphs are not necessarily covering, but the covering case is A367863, unlabeled A006649, and the unlabeled version is A001434. - Gus Wiseman, Dec 22 2023

Examples

			a(5) = C(C(5,2),5) = C(10,5) = 252.
		

Crossrefs

Main diagonal of A084546.
The unlabeled version is A001434, covering case A006649.
The connected case is A057500, unlabeled A001429.
For set-systems we have A136556, covering case A054780.
The covering case is A367863.
A006125 counts graphs, A000088 unlabeled.
A006129 counts covering graphs, A002494 unlabeled.
A133686 counts graphs satisfying a strict AOC, connected A129271.
A367867 counts graphs contradicting a strict AOC, connected A140638.

Programs

  • Magma
    [0] cat [(Binomial(Binomial(n+2, n), n+2)): n in [0..20]]; // Vincenzo Librandi, Nov 03 2014
    
  • Maple
    a:= n-> binomial(binomial(n, 2), n):
    seq(a(n), n=0..20);
  • Mathematica
    nn = 18; f[x_, y_] :=
    Sum[(1 + y)^Binomial[n, 2] x^n/n!, {n, 1, nn}]; Table[
    n! Coefficient[Series[f[x, y], {x, 0, nn}], x^n y^n], {n, 1, nn}] (* Geoffrey Critzer, Nov 02 2014 *)
    Table[Length[Subsets[Subsets[Range[n],{2}],{n}]],{n,0,5}] (* Gus Wiseman, Dec 22 2023 *)
    Table[SeriesCoefficient[(1 + x)^(n*(n-1)/2), {x, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Aug 06 2025 *)
  • Python
    from math import comb
    def A116508(n): return comb(n*(n-1)>>1,n) # Chai Wah Wu, Jul 02 2024
  • Sage
    [(binomial(binomial(n+2,n),n+2)) for n in range(-1, 17)] # Zerinvary Lajos, Nov 30 2009
    

Formula

a(n) ~ exp(n - 2) * n^(n - 1/2) / (sqrt(Pi) * 2^(n + 1/2)). - Vaclav Kotesovec, May 19 2020
a(n) = [x^n] (1+x)^(n*(n-1)/2). - Vaclav Kotesovec, Aug 06 2025

Extensions

a(0)=1 prepended by Alois P. Heinz, Feb 02 2024

A001429 Number of n-node connected unicyclic graphs.

Original entry on oeis.org

1, 2, 5, 13, 33, 89, 240, 657, 1806, 5026, 13999, 39260, 110381, 311465, 880840, 2497405, 7093751, 20187313, 57537552, 164235501, 469406091, 1343268050, 3848223585, 11035981711, 31679671920, 91021354454, 261741776369, 753265624291, 2169441973139, 6252511838796
Offset: 3

Views

Author

Keywords

Comments

Also unlabeled connected simple graphs with n vertices and n edges. The labeled version is A057500. - Gus Wiseman, Feb 12 2024

Examples

			From _Gus Wiseman_, Feb 12 2024: (Start)
Representatives of the a(3) = 1 through a(6) = 13 simple graphs:
  {12,13,23}  {12,13,14,23}  {12,13,14,15,23}  {12,13,14,15,16,23}
              {12,13,24,34}  {12,13,14,23,25}  {12,13,14,15,23,26}
                             {12,13,14,23,45}  {12,13,14,15,23,46}
                             {12,13,14,25,35}  {12,13,14,15,26,36}
                             {12,13,24,35,45}  {12,13,14,23,25,36}
                                               {12,13,14,23,25,46}
                                               {12,13,14,23,45,46}
                                               {12,13,14,23,45,56}
                                               {12,13,14,25,26,35}
                                               {12,13,14,25,35,46}
                                               {12,13,14,25,35,56}
                                               {12,13,14,25,36,56}
                                               {12,13,24,35,46,56}
(End)
		

References

  • R. C. Read and R. J. Wilson, An Atlas of Graphs, Oxford, 1998.
  • J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 150.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

For at most one cycle we have A005703, labeled A129271, complement A140637.
Next-to-main diagonal of A054924. Cf. A000055.
The labeled version is A057500, connected case of A137916.
This is the connected case of A137917 and A236570.
Row k = 1 of A137918.
The version with loops is A368983.
A001349 counts unlabeled connected graphs.
A001434 and A006649 count unlabeled graphs with # vertices = # edges.
A006129 counts covering graphs, unlabeled A002494.

Programs

  • Mathematica
    Needs["Combinatorica`"];
    nn=30;s[n_,k_]:=s[n,k]=a[n+1-k]+If[n<2k,0,s[n-k,k]];a[1]=1;a[n_]:=a[n]=Sum[a[i]s[n-1,i]i,{i,1,n-1}]/(n-1);rt=Table[a[i],{i,1,nn}];Apply[Plus,Table[Take[CoefficientList[CycleIndex[DihedralGroup[n],s]/.Table[s[j]->Table[Sum[rt[[i]]x^(k*i),{i,1,nn}],{k,1,nn}][[j]],{j,1,nn}],x],nn],{n,3,nn}]]  (* Geoffrey Critzer, Oct 12 2012, after code given by Robert A. Russell in A000081 *)
    (* Second program: *)
    TreeGf[nn_] := Module[{A}, A = Table[1, {nn}]; For[n = 1, n <= nn 1, n++, A[[n + 1]] = 1/n * Sum[Sum[ d*A[[d]], {d, Divisors[k]}]*A[[n - k + 1]], {k, 1, n}]]; x A.x^Range[0, nn-1]];
    seq[n_] := Module[{t, g}, If[n < 3, {}, t = TreeGf[n - 2]; g[e_] := Normal[t + O[x]^(Quotient[n, e]+1)] /. x -> x^e  + O[x]^(n+1); Sum[Sum[ EulerPhi[d]*g[d]^(k/d), {d, Divisors[k]}]/k + If[OddQ[k], g[1]* g[2]^Quotient[k, 2], (g[1]^2 + g[2])*g[2]^(k/2-1)/2], {k, 3, n}]]/2 // Drop[CoefficientList[#, x], 3]&];
    seq[32] (* Jean-François Alcover, Oct 05 2019, after Andrew Howroyd's PARI code *)
  • PARI
    \\ TreeGf gives gf of A000081
    TreeGf(N)={my(A=vector(N, j, 1)); for (n=1, N-1, A[n+1] = 1/n * sum(k=1, n, sumdiv(k, d, d*A[d]) * A[n-k+1] ) ); x*Ser(A)}
    seq(n)={if(n<3, [], my(t=TreeGf(n-2)); my(g(e)=subst(t + O(x*x^(n\e)),x,x^e) + O(x*x^n)); Vec(sum(k=3, n, sumdiv(k, d, eulerphi(d)*g(d)^(k/d))/k + if(k%2, g(1)*g(2)^(k\2), (g(1)^2+g(2))*g(2)^(k/2-1)/2))/2))} \\ Andrew Howroyd, May 05 2018

Formula

a(n) = A068051(n) - A027852(n) - A000081(n).

Extensions

More terms from Ronald C. Read
a(27) corrected, more terms, formula from Christian G. Bower, Feb 12 2002
Edited by Charles R Greathouse IV, Oct 05 2009
Terms a(30) and beyond from Andrew Howroyd, May 05 2018

A006649 Number of graphs with n nodes, n edges and no isolated vertices.

Original entry on oeis.org

1, 0, 0, 1, 2, 5, 15, 41, 124, 369, 1132, 3491, 10984, 34768, 111514, 360560, 1176797, 3870389, 12829765, 42829894, 143980892, 487227611, 1659499566, 5688046485, 19617965938, 68078878268, 237694501644, 834946053269, 2950683815028, 10490767818951, 37524169403930
Offset: 0

Views

Author

Keywords

References

  • W. L. Kocay, Some new methods in reconstruction theory, pp. 89 - 114 of Combinatorial Mathematics IX. Proc. Ninth Australian Conference (Brisbane, August 1981). Ed. E. J. Billington, S. Oates-Williams and A. P. Street. Lecture Notes Math., 952. Springer-Verlag, 1982.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • PARI
    a(n) = polcoef(G(n, O(x*x^n)) - if(n, G(n-1, O(x*x^n))), n) \\ G defined in A008406. - Andrew Howroyd, Jan 09 2024

Formula

a(n) = A008406(n,n) - A008406(n-1, n) for n > 0. - Andrew Howroyd, Jan 09 2024

Extensions

More terms from Vladeta Jovovic, Mar 02 2008
a(0)-a(2) prepended and a(27) and beyond from Andrew Howroyd, Jan 09 2024

A137916 Number of n-node labeled graphs whose components are unicyclic graphs.

Original entry on oeis.org

1, 0, 0, 1, 15, 222, 3670, 68820, 1456875, 34506640, 906073524, 26154657270, 823808845585, 28129686128940, 1035350305641990, 40871383866109888, 1722832666898627865, 77242791668604946560, 3670690919234354407000, 184312149879830557190940, 9751080154504005703189791
Offset: 0

Views

Author

Washington Bomfim, Feb 22 2008

Keywords

Comments

Also the number of labeled simple graphs with n vertices and n edges such that it is possible to choose a different vertex from each edge. The version without the choice condition is A116508, covering A367863. - Gus Wiseman, Jan 25 2024

Examples

			a(6) = 3670 because A057500(6) = 3660 and two triangles can be labeled in 10 ways.
From _Gus Wiseman_, Jan 25 2024: (Start)
The a(0) = 1 through a(4) = 15 simple graphs:
  {}  .  .  {12,13,23}  {12,13,14,23}
                        {12,13,14,24}
                        {12,13,14,34}
                        {12,13,23,24}
                        {12,13,23,34}
                        {12,13,24,34}
                        {12,14,23,24}
                        {12,14,23,34}
                        {12,14,24,34}
                        {12,23,24,34}
                        {13,14,23,24}
                        {13,14,23,34}
                        {13,14,24,34}
                        {13,23,24,34}
                        {14,23,24,34}
(End)
		

References

  • V. F. Kolchin, Random Graphs. Encyclopedia of Mathematics and Its Applications 53. Cambridge Univ. Press, Cambridge, 1999.

Crossrefs

The connected case is A057500.
Row sums of A106239.
The unlabeled version is A137917.
Diagonal of A144228.
The version with loops appears to be A333331, unlabeled A368984.
Column k = 0 of A368924.
The complement is counted by A369143, unlabeled A369201, covering A369144.
A006125 counts simple graphs, unlabeled A000088.
A006129 counts covering graphs, unlabeled A002494.
A054548 counts graphs covering n vertices with k edges, with loops A369199.
A133686 counts choosable simple graphs, covering A367869.
A140637 counts unlabeled non-choosable graphs, covering A369202.
A367867 counts non-choosable graphs, covering A367868.

Programs

  • Maple
    cy:= proc(n) option remember;
           binomial(n-1, 2)*add((n-3)!/(n-2-t)!*n^(n-2-t), t=1..n-2)
         end:
    T:= proc(n,k) option remember; `if`(k=0, 1, `if`(k<0 or n T(n,n):
    seq(a(n), n=0..30);  # Alois P. Heinz, Sep 15 2008
  • Mathematica
    nn = 20; t = Sum[n^(n - 1) x^n/n!, {n, 1, nn}]; Drop[Range[0, nn]! CoefficientList[Series[Exp[Log[1/(1 - t)]/2 - t/2 - t^2/4], {x, 0, nn}], x], 1] (* Geoffrey Critzer, Jan 24 2012 *)
    Table[Length[Select[Subsets[Subsets[Range[n],{2}],{n}],Length[Select[Tuples[#],UnsameQ@@#&]]!=0&]],{n,0,5}] (* Gus Wiseman, Jan 25 2024 *)
  • PARI
    A057500(p) = (p-1)! * p^p /2 * sum(k = 3,p, 1/(p^k*(p-k)!)); /* Vladeta Jovovic, A057500. */
    F(n,N) = { my(s = 0, K, D, Mc); forpart(P = n, D = Set(P); K = vector(#D);
    for(i=1, #D, K[i] = #select(x->x == D[i], Vec(P)));
    Mc = n!/prod(i=1,#D, K[i]!);
    s += Mc * prod(i = 1, #D, A057500(D[i])^K[i] / ( D[i]!^K[i])) , [3, n], [N, N]); s };
    a(n)= {my(N); sum(N = 1, n, F(n,N))};
    
  • PARI
    seq(n)={my(w=lambertw(-x+O(x*x^n))); Vec(serlaplace(exp(-log(1+w)/2 + w/2 - w^2/4)))} \\ Andrew Howroyd, May 18 2021

Formula

a(n) = Sum_{N = 1..n} ((n!/N!) * Sum_{n_1 + n_2 + ... + n_N = n} Product_{i = 1..N} ( A057500(n_i) / n_i! ) ). [V. F. Kolchin p. 31, (1.4.2)] replacing numerator terms n_i^(n_i-2) by A057500(n_i).
a(n) = A144228(n,n). - Alois P. Heinz, Sep 15 2008
E.g.f.: exp(B(T(x))) where B(x) = (log(1/(1-x))-x-x^2/2)/2 and T(x) is the e.g.f. for A000169 (labeled rooted trees). - Geoffrey Critzer, Jan 24 2012
a(n) ~ 2^(-1/4)*exp(-3/4)*GAMMA(3/4)*n^(n-1/4)/sqrt(Pi) * (1-7*Pi/(12*GAMMA(3/4)^2*sqrt(n))). - Vaclav Kotesovec, Aug 16 2013
E.g.f.: exp(B(x)) where B(x) is the e.g.f. of A057500. - Andrew Howroyd, May 18 2021

Extensions

a(0)=1 prepended by Andrew Howroyd, May 18 2021

A137917 a(n) is the number of unlabeled graphs on n nodes whose components are unicyclic graphs.

Original entry on oeis.org

1, 0, 0, 1, 2, 5, 14, 35, 97, 264, 733, 2034, 5728, 16101, 45595, 129327, 368093, 1049520, 2999415, 8584857, 24612114, 70652441, 203075740, 584339171, 1683151508, 4852736072, 14003298194, 40441136815, 116880901512, 338040071375, 978314772989, 2833067885748, 8208952443400
Offset: 0

Views

Author

Washington Bomfim, Feb 24 2008

Keywords

Comments

a(n) is the number of simple unlabeled graphs on n nodes whose components have exactly one cycle. - Geoffrey Critzer, Oct 12 2012
Also the number of unlabeled simple graphs with n vertices and n edges such that it is possible to choose a different vertex from each edge. - Gus Wiseman, Jan 25 2024

Examples

			From _Gus Wiseman_, Jan 25 2024: (Start)
Representatives of the a(0) = 1 through a(5) = 5 simple graphs:
  {}  .  .  {12,13,23}  {12,13,14,23}  {12,13,14,15,23}
                        {12,13,24,34}  {12,13,14,23,25}
                                       {12,13,14,23,45}
                                       {12,13,14,25,35}
                                       {12,13,24,35,45}
(End)
		

Crossrefs

The connected case is A001429.
Without the choice condition we have A001434, covering A006649.
For any number of edges we have A134964, complement A140637.
The labeled version is A137916.
The version with loops is A369145, complement A368835.
The complement is counted by A369201, labeled A369143, covering A369144.
A006129 counts covering graphs, unlabeled A002494.
A054548 counts graphs covering n vertices with k edges, with loops A369199.
A129271 counts connected choosable simple graphs, unlabeled A005703.

Programs

  • Mathematica
    Needs["Combinatorica`"];
    nn=30;s[n_,k_]:=s[n,k]=a[n+1-k]+If[n<2k,0,s[n-k,k]];a[1]=1;a[n_]:=a[n]=Sum[a[i]s[n-1,i]i,{i,1,n-1}]/(n-1);rt=Table[a[i],{i,1,nn}];c=Drop[Apply[Plus,Table[Take[CoefficientList[CycleIndex[DihedralGroup[n],s]/.Table[s[j]->Table[Sum[rt[[i]]x^(k*i),{i,1,nn}],{k,1,nn}][[j]],{j,1,nn}],x],nn],{n,3,nn}]],1];CoefficientList[Series[Product[1/(1-x^i)^c[[i]],{i,1,nn-1}],{x,0,nn}],x]   (* Geoffrey Critzer, Oct 12 2012, after code given by Robert A. Russell in A000081 *)
    brute[m_]:=First[Sort[Table[Sort[Sort/@(m/.Rule@@@Table[{(Union@@m)[[i]],p[[i]]},{i,Length[p]}])],{p,Permutations[Range[Length[Union@@m]]]}]]];
    Table[Length[Union[brute/@Select[Subsets[Subsets[Range[n],{2}],{n}],Select[Tuples[#],UnsameQ@@#&]!={}&]]],{n,0,5}] (* Gus Wiseman, Jan 25 2024 *)

Formula

a(n) = Sum_{1*j_1 + 2*j_2 + ... = n} (Product_{i=3..n} binomial(A001429(i) + j_i -1, j_i)). [F. Ruskey p. 79, (4.27) with n replaced by n+1, and a_i replaced by A001429(i)].
Euler transform of A001429. - Geoffrey Critzer, Oct 12 2012

Extensions

Edited by Washington Bomfim, Jun 27 2012
Terms a(30) and beyond from Andrew Howroyd, May 05 2018
Offset changed to 0 by Gus Wiseman, Jan 27 2024

A368598 Number of non-isomorphic n-element sets of singletons or pairs of elements of {1..n}, or unlabeled loop-graphs with n edges and up to n vertices.

Original entry on oeis.org

1, 1, 2, 6, 17, 52, 173, 585, 2064, 7520, 28265, 109501, 437394, 1799843, 7629463, 33302834, 149633151, 691702799, 3287804961, 16058229900, 80533510224, 414384339438, 2185878202630, 11811050484851, 65318772618624, 369428031895444, 2135166786135671, 12601624505404858
Offset: 0

Views

Author

Gus Wiseman, Jan 05 2024

Keywords

Comments

It doesn't matter for this sequence whether we use loops such as {x,x} or half-loops such as {x}.

Examples

			Non-isomorphic representatives of the a(0) = 1 through a(4) = 17 set-systems:
  {}  {{1}}  {{1},{2}}    {{1},{2},{3}}        {{1},{2},{3},{4}}
             {{1},{1,2}}  {{1},{2},{1,2}}      {{1},{2},{3},{1,2}}
                          {{1},{2},{1,3}}      {{1},{2},{3},{1,4}}
                          {{1},{1,2},{1,3}}    {{1},{2},{1,2},{1,3}}
                          {{1},{1,2},{2,3}}    {{1},{2},{1,2},{3,4}}
                          {{1,2},{1,3},{2,3}}  {{1},{2},{1,3},{1,4}}
                                               {{1},{2},{1,3},{2,3}}
                                               {{1},{2},{1,3},{2,4}}
                                               {{1},{3},{1,2},{2,4}}
                                               {{1},{1,2},{1,3},{1,4}}
                                               {{1},{1,2},{1,3},{2,3}}
                                               {{1},{1,2},{1,3},{2,4}}
                                               {{1},{1,2},{2,3},{3,4}}
                                               {{2},{1,2},{1,3},{1,4}}
                                               {{4},{1,2},{1,3},{2,3}}
                                               {{1,2},{1,3},{1,4},{2,3}}
                                               {{1,2},{1,3},{2,4},{3,4}}
		

Crossrefs

For any number of edges of any size we have A000612, covering A055621.
For any number of edges we have A000666, A054921, A322700.
The labeled version is A014068.
Counting by weight gives A320663, or A339888 with loops {x,x}.
The covering case is A368599.
For edges of any size we have A368731, covering A368186.
Row sums of A368836.
A000085 counts set partitions into singletons or pairs.
A001515 counts length-n set partitions into singletons or pairs.
A100861 counts set partitions into singletons or pairs by number of pairs.
A111924 counts set partitions into singletons or pairs by length.

Programs

  • Mathematica
    brute[m_]:=First[Sort[Table[Sort[Sort /@ (m/.Rule@@@Table[{(Union@@m)[[i]],p[[i]]}, {i,Length[p]}])], {p,Permutations[Range[Length[Union@@m]]]}]]];
    Table[Length[Union[brute /@ Subsets[Subsets[Range[n],{1,2}],{n}]]],{n,0,5}]
  • PARI
    a(n) = polcoef(G(n, O(x*x^n)), n) \\ G defined in A070166. - Andrew Howroyd, Jan 09 2024

Formula

a(n) = A070166(n, n). - Andrew Howroyd, Jan 09 2024

Extensions

Terms a(7) and beyond from Andrew Howroyd, Jan 09 2024

A368836 Triangle read by rows where T(n,k) is the number of unlabeled loop-graphs on up to n vertices with k loops and n-k non-loops.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 1, 2, 2, 1, 2, 6, 6, 2, 1, 6, 17, 18, 8, 2, 1, 21, 52, 58, 30, 9, 2, 1, 65, 173, 191, 107, 37, 9, 2, 1, 221, 585, 666, 393, 148, 39, 9, 2, 1, 771, 2064, 2383, 1493, 589, 168, 40, 9, 2, 1, 2769, 7520, 8847, 5765, 2418, 718, 176, 40, 9, 2, 1
Offset: 0

Views

Author

Gus Wiseman, Jan 11 2024

Keywords

Comments

Are the row sums the same as column k = 1 (shifted left)?
Yes. When k = 1 there is one loop. Remove the vertex with the loop and add loops to its neighbors. This process is reversible so there is a bijection. - Andrew Howroyd, Jan 13 2024

Examples

			Triangle begins:
   1
   0  1
   0  1  1
   1  2  2  1
   2  6  6  2  1
   6 17 18  8  2  1
  21 52 58 30  9  2  1
Representatives of the loop-graphs counted by row n = 4:
  {12}{13}{14}{23} {1}{12}{13}{14} {1}{2}{12}{13} {1}{2}{3}{12} {1}{2}{3}{4}
  {12}{13}{24}{34} {1}{12}{13}{23} {1}{2}{12}{34} {1}{2}{3}{14}
                   {1}{12}{13}{24} {1}{2}{13}{14}
                   {1}{12}{23}{24} {1}{2}{13}{23}
                   {1}{12}{23}{34} {1}{2}{13}{24}
                   {1}{23}{24}{34} {1}{2}{13}{34}
		

Crossrefs

Column k = 0 is A001434.
Row sums are A368598.
The labeled version is A368928.
A000085, A100861, A111924 count set partitions into singletons or pairs.
A006125 counts graphs, unlabeled A000088.
A006129 counts covering graphs, unlabeled A002494.
A014068 counts loop-graphs, unlabeled A000666.
A058891 counts set-systems, unlabeled A000612.

Programs

  • Mathematica
    brute[m_]:=First[Sort[Table[Sort[Sort /@ (m/.Rule@@@Table[{(Union@@m)[[i]],p[[i]]},{i,Length[p]}])], {p,Permutations[Range[Length[Union@@m]]]}]]];
    Table[Length[Union[brute /@ Select[Subsets[Subsets[Range[n],{1,2}],{n}],Count[#,{_}]==k&]]], {n,0,4},{k,0,n}]
  • PARI
    permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
    edges(v, t) = {prod(i=2, #v, prod(j=1, i-1, my(g=gcd(v[i], v[j])); t(v[i]*v[j]/g)^g )) * prod(i=1, #v, my(c=v[i]); t(c)^((c-1)\2)*if(c%2, 1, t(c/2)))}
    row(n) = {my(s=0, A=1+O(x*x^n)); forpart(p=n, s+=permcount(p) * polcoef(edges(p, i->A + x^i)*prod(i=1, #p, A + (x*y)^p[i]), n)); Vecrev(s/n!)} \\ Andrew Howroyd, Jan 13 2024

Extensions

a(28) onwards from Andrew Howroyd, Jan 13 2024

A369201 Number of unlabeled simple graphs with n vertices and n edges such that it is not possible to choose a different vertex from each edge (non-choosable).

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 7, 30, 124, 507, 2036, 8216, 33515, 138557, 583040, 2503093, 10985364, 49361893, 227342301, 1073896332, 5204340846, 25874724616, 131937166616, 689653979583, 3693193801069, 20247844510508, 113564665880028, 651138092719098, 3813739129140469
Offset: 0

Views

Author

Gus Wiseman, Jan 22 2024

Keywords

Comments

These are graphs with n vertices and n edges having at least two cycles in the same component.

Examples

			The a(0) = 0 through a(6) = 7 simple graphs:
  .  .  .  .  .  {{12}{13}{14}{23}{24}}  {{12}{13}{14}{15}{23}{24}}
                                         {{12}{13}{14}{15}{23}{45}}
                                         {{12}{13}{14}{23}{24}{34}}
                                         {{12}{13}{14}{23}{24}{35}}
                                         {{12}{13}{14}{23}{24}{56}}
                                         {{12}{13}{14}{23}{25}{45}}
                                         {{12}{13}{14}{25}{35}{45}}
		

Crossrefs

Without the choice condition we have A001434, covering A006649.
The labeled version without choice is A116508, covering A367863, A367862.
The complement is counted by A137917, labeled A137916.
For any number of edges we have A140637, complement A134964.
For labeled set-systems we have A368600.
The case with loops is A368835, labeled A368596.
The labeled version is A369143, covering A369144.
A006129 counts covering graphs, unlabeled A002494.
A007716 counts unlabeled multiset partitions, connected A007718.
A054548 counts graphs covering n vertices with k edges, with loops A369199.
A129271 counts connected choosable simple graphs, unlabeled A005703.

Programs

  • Mathematica
    brute[m_]:=First[Sort[Table[Sort[Sort/@(m/.Rule@@@Table[{(Union@@m)[[i]],p[[i]]},{i,Length[p]}])],{p,Permutations[Range[Length[Union@@m]]]}]]];
    Table[Length[Union[brute/@Select[Subsets[Subsets[Range[n],{2}],{n}],Select[Tuples[#],UnsameQ@@#&]=={}&]]],{n,0,5}]

Formula

a(n) = A001434(n) - A137917(n).

Extensions

a(25) onwards from Andrew Howroyd, Feb 02 2024

A370316 Number of unlabeled simple graphs covering n vertices with at most n edges.

Original entry on oeis.org

1, 0, 1, 2, 5, 10, 28, 68, 193, 534, 1568, 4635, 14146, 43610, 137015, 435227, 1400058, 4547768, 14917504, 49348612, 164596939, 553177992, 1872805144, 6385039022, 21917878860, 75739158828, 263438869515, 922219844982, 3249042441125, 11519128834499, 41097058489426
Offset: 0

Views

Author

Gus Wiseman, Feb 18 2024

Keywords

Examples

			The a(0) = 1 through a(5) = 10 simple graphs:
  {}  .  {12}  {12-13}     {12-34}        {12-13-45}
               {12-13-23}  {12-13-14}     {12-13-14-15}
                           {12-13-24}     {12-13-14-25}
                           {12-13-14-23}  {12-13-23-45}
                           {12-13-24-34}  {12-13-24-35}
                                          {12-13-14-15-23}
                                          {12-13-14-23-25}
                                          {12-13-14-23-45}
                                          {12-13-14-25-35}
                                          {12-13-24-35-45}
		

Crossrefs

The connected case is A005703, labeled A129271.
The case of exactly n edges is A006649, covering case of A001434.
The labeled version is A369191.
Partial row sums of A370167, covering case of A008406.
The non-covering version with loops is A370168, labeled A066383.
The version with loops is A370169, labeled A369194.
The non-covering version is A370315, labeled A369192.
A006125 counts graphs, unlabeled A000088.
A006129 counts covering graphs, unlabeled A002494.
A322661 counts covering loop-graphs, unlabeled A322700.

Programs

  • Mathematica
    brute[m_]:=First[Sort[Table[Sort[Sort /@ (m/.Rule@@@Table[{(Union@@m)[[i]],p[[i]]},{i,Length[p]}])], {p,Permutations[Range[Length[Union@@m]]]}]]];
    Table[Length[Union[brute /@ Select[Subsets[Subsets[Range[n],{2}],{0,n}], Union@@#==Range[n]&]]],{n,0,5}]
  • PARI
    \\ G defined in A008406.
    a(n)=my(A=O(x*x^n)); if(n==0, 1, polcoef((G(n,A)-G(n-1,A))/(1-x), n)) \\ Andrew Howroyd, Feb 19 2024

Extensions

a(8) onwards from Andrew Howroyd, Feb 19 2024
Showing 1-10 of 15 results. Next