cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A005703 Number of n-node connected graphs with at most one cycle.

Original entry on oeis.org

1, 1, 1, 2, 4, 8, 19, 44, 112, 287, 763, 2041, 5577, 15300, 42419, 118122, 330785, 929469, 2621272, 7411706, 21010378, 59682057, 169859257, 484234165, 1382567947, 3952860475, 11315775161, 32430737380, 93044797486, 267211342954, 768096496093, 2209772802169
Offset: 0

Views

Author

Keywords

Comments

a(n) is the number of pseudotrees on n nodes. - Eric W. Weisstein, Jun 11 2012
Also unlabeled connected graphs covering n vertices with at most n edges. For this definition we have a(1) = 0 and possibly a(0) = 0. - Gus Wiseman, Feb 20 2024

Examples

			From _Gus Wiseman_, Feb 20 2024: (Start)
Representatives of the a(0) = 1 through a(5) = 8 graphs:
  {}  .  {12}  {12,13}     {12,13,14}     {12,13,14,15}
               {12,13,23}  {12,13,24}     {12,13,14,25}
                           {12,13,14,23}  {12,13,24,35}
                           {12,13,24,34}  {12,13,14,15,23}
                                          {12,13,14,23,25}
                                          {12,13,14,23,45}
                                          {12,13,14,25,35}
                                          {12,13,24,35,45}
(End)
		

References

  • J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 150.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000055, A000081, A001429 (labeled A057500), A134964 (number of pseudoforests, labeled A133686).
The labeled version is A129271.
The connected complement is A140636, labeled A140638.
Non-connected: A368834 (labeled A367869) or A370316 (labeled A369191).
A001187 counts connected graphs, unlabeled A001349.
A006125 counts simple graphs, unlabeled A000088.
A006129 counts covering graphs, unlabeled A002494.
A062734 counts connected graphs by number of edges.

Programs

  • Mathematica
    Needs["Combinatorica`"]; nn = 20; t[x_] := Sum[a[n] x^n, {n, 1, nn}];
    a[0] = 0;
    b = Drop[Flatten[
        sol = SolveAlways[
          0 == Series[
            t[x] - x Product[1/(1 - x^i)^a[i], {i, 1, nn}], {x, 0, nn}],
          x]; Table[a[n], {n, 0, nn}] /. sol], 1];
    r[x_] := Sum[b[[n]] x^n, {n, 1, nn}]; c =
    Drop[Table[
        CoefficientList[
         Series[CycleIndex[DihedralGroup[n], s] /.
           Table[s[i] -> r[x^i], {i, 1, n}], {x, 0, nn}], x], {n, 3,
         nn}] // Total, 1];
    d[x_] := Sum[c[[n]] x^n, {n, 1, nn}]; CoefficientList[
    Series[r[x] - (r[x]^2 - r[x^2])/2 + d[x] + 1, {x, 0, nn}], x] (* Geoffrey Critzer, Nov 17 2014 *)
  • PARI
    \\ TreeGf gives gf of A000081.
    TreeGf(N)={my(A=vector(N, j, 1)); for (n=1, N-1, A[n+1] = 1/n * sum(k=1, n, sumdiv(k, d, d*A[d]) * A[n-k+1] ) ); x*Ser(A)}
    seq(n)={my(t=TreeGf(n)); my(g(e)=subst(t + O(x*x^(n\e)), x, x^e) + O(x*x^n)); Vec(1 + g(1) + (g(2) - g(1)^2)/2 + sum(k=3, n, sumdiv(k, d, eulerphi(d)*g(d)^(k/d))/k + if(k%2, g(1)*g(2)^(k\2), (g(1)^2+g(2))*g(2)^(k/2-1)/2))/2)}; \\ Andrew Howroyd and Washington Bomfim, May 15 2021

Formula

a(n) = A000055(n) + A001429(n).

Extensions

More terms from Vladeta Jovovic, Apr 19 2000 and from Michael Somos, Apr 26 2000
a(27) corrected and a(28) and a(29) computed by Washington Bomfim, May 14 2008

A369191 Number of labeled simple graphs covering n vertices with at most n edges.

Original entry on oeis.org

1, 0, 1, 4, 34, 387, 5686, 102084, 2162168, 52693975, 1450876804, 44509105965, 1504709144203, 55563209785167, 2224667253972242, 95984473918245388, 4439157388017620554, 219067678811211857307, 11489425098298623161164, 638159082104453330569185
Offset: 0

Views

Author

Gus Wiseman, Jan 17 2024

Keywords

Comments

Row-sums of left portion of A054548.

Examples

			The a(0) = 1 through a(3) = 4 graphs:
  {}  .  {{1,2}}  {{1,2},{1,3}}
                  {{1,2},{2,3}}
                  {{1,3},{2,3}}
                  {{1,2},{1,3},{2,3}}
		

Crossrefs

The minimal case is A053530.
The connected case is A129271, unlabeled version A005703.
The case of equality is A367863, covering case of A367862.
This is the covering case of A369192, or A369193 for covered vertices.
The version for loop-graphs is A369194.
The unlabeled version is A370316.
A001187 counts connected graphs, unlabeled A001349.
A006125 counts graphs, unlabeled A000088.
A006129 counts covering graphs, unlabeled A002494.
A054548 counts graphs covering n vertices with k edges, with loops A369199.
A057500 counts connected graphs with n vertices and n edges.
A133686 counts choosable graphs, covering A367869.
A367867 counts non-choosable graphs, covering A367868.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Subsets[Range[n], {2}]],Length[Union@@#]==n&&Length[#]<=n&]],{n,0,5}]

Formula

Inverse binomial transform of A369193.

A370169 Number of unlabeled loop-graphs covering n vertices with at most n edges.

Original entry on oeis.org

1, 1, 3, 7, 19, 48, 135, 373, 1085, 3184, 9590, 29258, 90833, 285352, 908006, 2919953, 9487330, 31111997, 102934602, 343389708, 1154684849, 3912345408, 13353796977, 45906197103, 158915480378, 553897148543, 1943627750652, 6865605601382, 24411508473314, 87364180212671, 314682145679491
Offset: 0

Views

Author

Gus Wiseman, Feb 16 2024

Keywords

Examples

			The a(0) = 1 through a(4) = 19 loop-graph edge sets (loops shown as singletons):
  {}  {{1}}  {{1,2}}      {{1},{2,3}}          {{1,2},{3,4}}
             {{1},{2}}    {{1,2},{1,3}}        {{1},{2},{3,4}}
             {{1},{1,2}}  {{1},{2},{3}}        {{1},{1,2},{3,4}}
                          {{1},{2},{1,3}}      {{1},{2,3},{2,4}}
                          {{1},{1,2},{1,3}}    {{1},{2},{3},{4}}
                          {{1},{1,2},{2,3}}    {{1,2},{1,3},{1,4}}
                          {{1,2},{1,3},{2,3}}  {{1,2},{1,3},{2,4}}
                                               {{1},{2},{3},{1,4}}
                                               {{1},{2},{1,2},{3,4}}
                                               {{1},{2},{1,3},{1,4}}
                                               {{1},{2},{1,3},{2,4}}
                                               {{1},{2},{1,3},{3,4}}
                                               {{1},{1,2},{1,3},{1,4}}
                                               {{1},{1,2},{1,3},{2,4}}
                                               {{1},{1,2},{2,3},{2,4}}
                                               {{1},{1,2},{2,3},{3,4}}
                                               {{1},{2,3},{2,4},{3,4}}
                                               {{1,2},{1,3},{1,4},{2,3}}
                                               {{1,2},{1,3},{2,4},{3,4}}
		

Crossrefs

The case of equality is A368599, covering case of A368598.
The labeled version is A369194, covering case of A066383.
This is the covering case of A370168.
The loopless version is the covering case of A370315, labeled A369192.
This is the loopless version is A370316, labeled A369191.
A006125 counts graphs, unlabeled A000088.
A006129 counts covering graphs, unlabeled A002494.
A322661 counts covering loop-graphs, unlabeled A322700.

Programs

  • Mathematica
    brute[m_]:=First[Sort[Table[Sort[Sort /@ (m/.Rule@@@Table[{(Union@@m)[[i]],p[[i]]},{i,Length[p]}])], {p,Permutations[Range[Length[Union@@m]]]}]]];
    Table[Length[Union[brute /@ Select[Subsets[Subsets[Range[n],{1,2}]], Union@@#==Range[n]&&Length[#]<=n&]]],{n,0,5}]
  • PARI
    \\ G defined in A070166.
    a(n)=my(A=O(x*x^n)); if(n==0, 1, polcoef((G(n,A)-G(n-1,A))/(1-x), n)) \\ Andrew Howroyd, Feb 19 2024

Extensions

a(7) onwards from Andrew Howroyd, Feb 19 2024

A370168 Number of unlabeled loop-graphs with n vertices and at most n edges.

Original entry on oeis.org

1, 2, 5, 13, 36, 102, 313, 994, 3318, 11536, 41748, 156735, 609973, 2456235, 10224216, 43946245, 194866898, 890575047, 4190997666, 20289434813, 100952490046, 515758568587, 2703023502100, 14518677321040, 79852871813827, 449333028779385, 2584677513933282
Offset: 0

Views

Author

Gus Wiseman, Feb 16 2024

Keywords

Examples

			The a(0) = 1 through a(3) = 13 loop-graph edge sets (loops shown as singletons):
  {}  {}     {}           {}
      {{1}}  {{1}}        {{1}}
             {{1,2}}      {{1,2}}
             {{1},{2}}    {{1},{2}}
             {{1},{1,2}}  {{1},{1,2}}
                          {{1},{2,3}}
                          {{1,2},{1,3}}
                          {{1},{2},{3}}
                          {{1},{2},{1,2}}
                          {{1},{2},{1,3}}
                          {{1},{1,2},{1,3}}
                          {{1},{1,2},{2,3}}
                          {{1,2},{1,3},{2,3}}
		

Crossrefs

The labeled version is A066383, covering A369194.
The case of equality is A368598, covering A368599.
The covering case is A370169, labeled A369194.
The loopless version is A370315, labeled A369192.
The covering loopless version is A370316, labeled A369191.
A006125 counts graphs, unlabeled A000088.
A006129 counts covering graphs, unlabeled A002494.
A322661 counts covering loop-graphs, unlabeled A322700.

Programs

  • Mathematica
    brute[m_]:=First[Sort[Table[Sort[Sort /@ (m/.Rule@@@Table[{(Union@@m)[[i]],p[[i]]},{i,Length[p]}])], {p,Permutations[Range[Length[Union@@m]]]}]]];
    Table[Length[Union[brute /@ Select[Subsets[Subsets[Range[n], {1,2}]],Length[#]<=n&]]],{n,0,5}]
  • PARI
    a(n)=my(A=O(x*x^n)); if(n==0, 1, polcoef(G(n, A)/(1-x), n)) \\ G defined in A070166. - Andrew Howroyd, Feb 19 2024

Extensions

a(7) onwards from Andrew Howroyd, Feb 19 2024

A370315 Number of unlabeled simple graphs with n possibly isolated vertices and up to n edges.

Original entry on oeis.org

1, 1, 2, 4, 9, 20, 54, 146, 436, 1372, 4577, 15971, 58376, 221876, 876012, 3583099, 15159817, 66248609, 298678064, 1387677971, 6637246978, 32648574416, 165002122350, 855937433641, 4553114299140, 24813471826280, 138417885372373, 789683693019999, 4603838061688077
Offset: 0

Views

Author

Gus Wiseman, Feb 18 2024

Keywords

Examples

			The a(1) = 1 through a(4) = 9 graph edge sets:
  {}  {}    {}          {}
      {12}  {12}        {12}
            {12-13}     {12-13}
            {12-13-23}  {12-34}
                        {12-13-14}
                        {12-13-23}
                        {12-13-24}
                        {12-13-14-23}
                        {12-13-24-34}
		

Crossrefs

The case of exactly n edges is A001434, covering A006649.
The connected covering case is A005703, labeled A129271.
Partial row sums of A008406, covering A370167.
The labeled version is A369192.
The version with loops is A370168, labeled A066383.
The covering case is A370316, labeled A369191.
A006125 counts graphs, unlabeled A000088.
A006129 counts covering graphs, unlabeled A002494.

Programs

  • Mathematica
    brute[m_]:=First[Sort[Table[Sort[Sort /@ (m/.Rule@@@Table[{(Union@@m)[[i]],p[[i]]}, {i,Length[p]}])], {p,Permutations[Range[Length[Union@@m]]]}]]];
    Table[Length[Union[brute /@ Select[Subsets[Subsets[Range[n],{2}]], Length[#]<=n&]]],{n,0,5}]
  • PARI
    a(n) = if(n<=1, n>=0, polcoef(G(n, O(x*x^n))/(1-x),n)) \\ G(n) defined in A008406. - Andrew Howroyd, Feb 20 2024

Formula

Sum of first n+1 terms of row n of A008406.
Showing 1-5 of 5 results.