cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 83 results. Next

A000081 Number of unlabeled rooted trees with n nodes (or connected functions with a fixed point).

Original entry on oeis.org

0, 1, 1, 2, 4, 9, 20, 48, 115, 286, 719, 1842, 4766, 12486, 32973, 87811, 235381, 634847, 1721159, 4688676, 12826228, 35221832, 97055181, 268282855, 743724984, 2067174645, 5759636510, 16083734329, 45007066269, 126186554308, 354426847597, 997171512998
Offset: 0

Views

Author

Keywords

Comments

Also, number of ways of arranging n-1 nonoverlapping circles: e.g., there are 4 ways to arrange 3 circles, as represented by ((O)), (OO), (O)O, OOO, also see example. (Of course the rules here are different from the usual counting parentheses problems - compare A000108, A001190, A001699.) See Sloane's link for a proof and Vogeler's link for illustration of a(7) as arrangement of 6 circles.
Take a string of n x's and insert n-1 ^'s and n-1 pairs of parentheses in all possible legal ways (cf. A003018). Sequence gives number of distinct functions. The single node tree is "x". Making a node f2 a child of f1 represents f1^f2. Since (f1^f2)^f3 is just f1^(f2*f3) we can think of it as f1 raised to both f2 and f3, that is, f1 with f2 and f3 as children. E.g., for n=4 the distinct functions are ((x^x)^x)^x; (x^(x^x))^x; x^((x^x)^x); x^(x^(x^x)). - W. Edwin Clark and Russ Cox, Apr 29 2003; corrected by Keith Briggs, Nov 14 2005
Also, number of connected multigraphs of order n without cycles except for one loop. - Washington Bomfim, Sep 04 2010
Also, number of planted trees with n+1 nodes.
Also called "Polya trees" by Genitrini (2016). - N. J. A. Sloane, Mar 24 2017

Examples

			G.f. = x + x^2 + 2*x^3 + 4*x^4 + 9*x^5 + 20*x^6 + 48*x^7 + 115*x^8 + ...
From _Joerg Arndt_, Jun 29 2014: (Start)
The a(6) = 20 trees with 6 nodes have the following level sequences (with level of root = 0) and parenthesis words:
  01:  [ 0 1 2 3 4 5 ]    (((((())))))
  02:  [ 0 1 2 3 4 4 ]    ((((()()))))
  03:  [ 0 1 2 3 4 3 ]    ((((())())))
  04:  [ 0 1 2 3 4 2 ]    ((((()))()))
  05:  [ 0 1 2 3 4 1 ]    ((((())))())
  06:  [ 0 1 2 3 3 3 ]    (((()()())))
  07:  [ 0 1 2 3 3 2 ]    (((()())()))
  08:  [ 0 1 2 3 3 1 ]    (((()()))())
  09:  [ 0 1 2 3 2 3 ]    (((())(())))
  10:  [ 0 1 2 3 2 2 ]    (((())()()))
  11:  [ 0 1 2 3 2 1 ]    (((())())())
  12:  [ 0 1 2 3 1 2 ]    (((()))(()))
  13:  [ 0 1 2 3 1 1 ]    (((()))()())
  14:  [ 0 1 2 2 2 2 ]    ((()()()()))
  15:  [ 0 1 2 2 2 1 ]    ((()()())())
  16:  [ 0 1 2 2 1 2 ]    ((()())(()))
  17:  [ 0 1 2 2 1 1 ]    ((()())()())
  18:  [ 0 1 2 1 2 1 ]    ((())(())())
  19:  [ 0 1 2 1 1 1 ]    ((())()()())
  20:  [ 0 1 1 1 1 1 ]    (()()()()())
(End)
		

References

  • F. Bergeron, G. Labelle and P. Leroux, Combinatorial Species and Tree-Like Structures, Camb. 1998, p. 279.
  • N. L. Biggs et al., Graph Theory 1736-1936, Oxford, 1976, pp. 42, 49.
  • Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, pages 305, 998.
  • A. Cayley, On the analytical forms called trees, with application to the theory of chemical combinations, Reports British Assoc. Advance. Sci. 45 (1875), 257-305 = Math. Papers, Vol. 9, 427-460 (see p. 451).
  • J. L. Gross and J. Yellen, eds., Handbook of Graph Theory, CRC Press, 2004; p. 526.
  • F. Harary, Graph Theory. Addison-Wesley, Reading, MA, 1969, p. 232.
  • F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, pp. 54 and 244.
  • Alexander S. Karpenko, Łukasiewicz Logics and Prime Numbers, Luniver Press, Beckington, 2006, p. 82.
  • D. E. Knuth, The Art of Computer Programming, Vol. 1: Fundamental Algorithms, 3d Ed. 1997, pp. 386-388.
  • D. E. Knuth, The Art of Computer Programming, vol. 1, 3rd ed., Fundamental Algorithms, p. 395, ex. 2.
  • D. E. Knuth, TAOCP, Vol. 4, Section 7.2.1.6.
  • G. Polya and R. C. Read, Combinatorial Enumeration of Groups, Graphs and Chemical Compounds, Springer-Verlag, 1987, p. 63.
  • R. C. Read and R. J. Wilson, An Atlas of Graphs, Oxford, 1998. [Comment from Neven Juric: Page 64 incorrectly gives a(21)=35224832.]
  • J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 138.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000041 (partitions), A000055 (unrooted trees), A000169, A001858, A005200, A027750, A051491, A051492, A093637, A187770, A199812, A255170, A087803 (partial sums).
Row sums of A144963. - Gary W. Adamson, Sep 27 2008
Cf. A209397 (log(A(x)/x)).
Cf. A000106 (self-convolution), A002861 (rings of these).
Column k=1 of A033185 and A034799; column k=0 of A008295.

Programs

  • Haskell
    import Data.List (genericIndex)
    a000081 = genericIndex a000081_list
    a000081_list = 0 : 1 : f 1 [1,0] where
       f x ys = y : f (x + 1) (y : ys) where
         y = sum (zipWith (*) (map h [1..x]) ys) `div` x
         h = sum . map (\d -> d * a000081 d) . a027750_row
    -- Reinhard Zumkeller, Jun 17 2013
    
  • Magma
    N := 30; P := PowerSeriesRing(Rationals(),N+1); f := func< A | x*&*[Exp(Evaluate(A,x^k)/k) : k in [1..N]]>; G := x; for i in [1..N] do G := f(G); end for; G000081 := G; A000081 := [0] cat Eltseq(G); // Geoff Bailey (geoff(AT)maths.usyd.edu.au), Nov 30 2009
    
  • Maple
    N := 30: a := [1,1]; for n from 3 to N do x*mul( (1-x^i)^(-a[i]), i=1..n-1); series(%,x,n+1); b := coeff(%,x,n); a := [op(a),b]; od: a; A000081 := proc(n) if n=0 then 1 else a[n]; fi; end; G000081 := series(add(a[i]*x^i,i=1..N),x,N+2); # also used in A000055
    spec := [ T, {T=Prod(Z,Set(T))} ]; A000081 := n-> combstruct[count](spec,size=n); [seq(combstruct[count](spec,size=n), n=0..40)];
    # a much more efficient method for computing the result with Maple. It uses two procedures:
    a := proc(n) local k; a(n) := add(k*a(k)*s(n-1,k), k=1..n-1)/(n-1) end proc:
    a(0) := 0: a(1) := 1: s := proc(n,k) local j; s(n,k) := add(a(n+1-j*k), j=1..iquo(n,k)); # Joe Riel (joer(AT)san.rr.com), Jun 23 2008
    # even more efficient, uses the Euler transform:
    with(numtheory): a:= proc(n) option remember; local d, j; `if`(n<=1, n, (add(add(d*a(d), d=divisors(j)) *a(n-j), j=1..n-1))/ (n-1)) end:
    seq(a(n), n=0..50); # Alois P. Heinz, Sep 06 2008
  • Mathematica
    s[ n_, k_ ] := s[ n, k ]=a[ n+1-k ]+If[ n<2k, 0, s[ n-k, k ] ]; a[ 1 ]=1; a[ n_ ] := a[ n ]=Sum[ a[ i ]s[ n-1, i ]i, {i, 1, n-1} ]/(n-1); Table[ a[ i ], {i, 1, 30} ] (* Robert A. Russell *)
    a[n_] := a[n] = If[n <= 1, n, Sum[Sum[d*a[d], {d, Divisors[j]}]*a[n-j], {j, 1, n-1}]/(n-1)]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Feb 17 2014, after Alois P. Heinz *)
    a[n_] := a[n] = If[n <= 1, n, Sum[a[n - j] DivisorSum[j, # a[#] &], {j, n - 1}]/(n - 1)]; Table[a[n], {n, 0, 30}] (* Jan Mangaldan, May 07 2014, after Alois P. Heinz *)
    (* first do *) << NumericalDifferentialEquationAnalysis`; (* then *)
    ButcherTreeCount[30] (* v8 onward Robert G. Wilson v, Sep 16 2014 *)
    a[n:0|1] := n; a[n_] := a[n] = Sum[m a[m] a[n-k*m], {m, n-1}, {k, (n-1)/m}]/(n-1); Table[a[n], {n, 0, 30}] (* Vladimir Reshetnikov, Nov 06 2015 *)
    terms = 31; A[] = 0; Do[A[x] = x*Exp[Sum[A[x^k]/k, {k, 1, j}]] + O[x]^j // Normal, {j, 1, terms}]; CoefficientList[A[x], x] (* Jean-François Alcover, Jan 11 2018 *)
  • Maxima
    g(m):= block([si,v],s:0,v:divisors(m), for si in v do (s:s+r(m/si)/si),s);
    r(n):=if n=1 then 1 else sum(Co(n-1,k)/k!,k,1,n-1);
    Co(n,k):=if k=1  then g(n)  else sum(g(i+1)*Co(n-i-1,k-1),i,0,n-k);
    makelist(r(n),n,1,12); /*Vladimir Kruchinin, Jun 15 2012 */
    
  • PARI
    {a(n) = local(A = x); if( n<1, 0, for( k=1, n-1, A /= (1 - x^k + x * O(x^n))^polcoeff(A, k)); polcoeff(A, n))}; /* Michael Somos, Dec 16 2002 */
    
  • PARI
    {a(n) = local(A, A1, an, i); if( n<1, 0, an = Vec(A = A1 = 1 + O(x^n)); for( m=2, n, i=m\2; an[m] = sum( k=1, i, an[k] * an[m-k]) + polcoeff( if( m%2, A *= (A1 - x^i)^-an[i], A), m-1)); an[n])}; /* Michael Somos, Sep 05 2003 */
    
  • PARI
    N=66;  A=vector(N+1, j, 1);
    for (n=1, N, A[n+1] = 1/n * sum(k=1,n, sumdiv(k,d, d*A[d]) * A[n-k+1] ) );
    concat([0], A) \\ Joerg Arndt, Apr 17 2014
    
  • Python
    from functools import lru_cache
    from sympy import divisors
    @lru_cache(maxsize=None)
    def divisor_tuple(n): # cached unordered tuple of divisors
        return tuple(divisors(n,generator=True))
    @lru_cache(maxsize=None)
    def A000081(n): return n if n <= 1 else sum(sum(d*A000081(d) for d in divisor_tuple(k))*A000081(n-k) for k in range(1,n))//(n-1) # Chai Wah Wu, Jan 14 2022
  • Sage
    @CachedFunction
    def a(n):
        if n < 2: return n
        return add(add(d*a(d) for d in divisors(j))*a(n-j) for j in (1..n-1))/(n-1)
    [a(n) for n in range(31)] # Peter Luschny, Jul 18 2014 after Alois P. Heinz
    
  • Sage
    [0]+[RootedTrees(n).cardinality() for n in range(1,31)] # Freddy Barrera, Apr 07 2019
    

Formula

G.f. A(x) satisfies A(x) = x*exp(A(x)+A(x^2)/2+A(x^3)/3+A(x^4)/4+...) [Polya]
Also A(x) = Sum_{n>=1} a(n)*x^n = x / Product_{n>=1} (1-x^n)^a(n).
Recurrence: a(n+1) = (1/n) * Sum_{k=1..n} ( Sum_{d|k} d*a(d) ) * a(n-k+1).
Asymptotically c * d^n * n^(-3/2), where c = A187770 = 0.439924... and d = A051491 = 2.955765... [Polya; Knuth, section 7.2.1.6].
Euler transform is sequence itself with offset -1. - Michael Somos, Dec 16 2001
For n > 1, a(n) = A087803(n) - A087803(n-1). - Vladimir Reshetnikov, Nov 06 2015
For n > 1, a(n) = A123467(n-1). - Falk Hüffner, Nov 26 2015

A000088 Number of simple graphs on n unlabeled nodes.

Original entry on oeis.org

1, 1, 2, 4, 11, 34, 156, 1044, 12346, 274668, 12005168, 1018997864, 165091172592, 50502031367952, 29054155657235488, 31426485969804308768, 64001015704527557894928, 245935864153532932683719776, 1787577725145611700547878190848, 24637809253125004524383007491432768
Offset: 0

Views

Author

Keywords

Comments

Euler transform of the sequence A001349.
Also, number of equivalence classes of sign patterns of totally nonzero symmetric n X n matrices.

References

  • Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, page 430.
  • J. L. Gross and J. Yellen, eds., Handbook of Graph Theory, CRC Press, 2004; p. 519.
  • F. Harary, Graph Theory. Addison-Wesley, Reading, MA, 1969, p. 214.
  • F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 240.
  • Thomas Boyer-Kassem, Conor Mayo-Wilson, Scientific Collaboration and Collective Knowledge: New Essays, New York, Oxford University Press, 2018, see page 47.
  • M. Kauers and P. Paule, The Concrete Tetrahedron, Springer 2011, p. 54.
  • Lupanov, O. B. Asymptotic estimates of the number of graphs with n edges. (Russian) Dokl. Akad. Nauk SSSR 126 1959 498--500. MR0109796 (22 #681).
  • M. D. McIlroy, Calculation of numbers of structures of relations on finite sets, Massachusetts Institute of Technology, Research Laboratory of Electronics, Quarterly Progress Reports, No. 17, Sep. 15, 1955, pp. 14-22.
  • R. C. Read and R. J. Wilson, An Atlas of Graphs, Oxford, 1998.
  • R. W. Robinson, Numerical implementation of graph counting algorithms, AGRC Grant, Math. Dept., Univ. Newcastle, Australia, 1976.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Partial sums of A002494.
Cf. A000666 (graphs with loops), A001349 (connected graphs), A002218, A006290, A003083.
Column k=1 of A063841.
Column k=2 of A309858.
Row sums of A008406.
Cf. also A000055, A000664.
Partial sums are A006897.

Programs

  • Maple
    # To produce all graphs on 4 nodes, for example:
    with(GraphTheory):
    L:=[NonIsomorphicGraphs](4,output=graphs,outputform=adjacency): # N. J. A. Sloane, Oct 07 2013
    seq(GraphTheory[NonIsomorphicGraphs](n,output=count),n=1..10); # Juergen Will, Jan 02 2018
    # alternative Maple program:
    b:= proc(n, i, l) `if`(n=0 or i=1, 1/n!*2^((p-> add(ceil((p[j]-1)/2)
          +add(igcd(p[k], p[j]), k=1..j-1), j=1..nops(p)))([l[], 1$n])),
           add(b(n-i*j, i-1, [l[], i$j])/j!/i^j, j=0..n/i))
        end:
    a:= n-> b(n$2, []):
    seq(a(n), n=0..20);  # Alois P. Heinz, Aug 14 2019
  • Mathematica
    Needs["Combinatorica`"]
    Table[NumberOfGraphs[n], {n, 0, 19}] (* Geoffrey Critzer, Mar 12 2011 *)
    permcount[v_] := Module[{m = 1, s = 0, k = 0, t}, For[i = 1, i <= Length[v], i++, t = v[[i]]; k = If[i > 1 && t == v[[i - 1]], k + 1, 1]; m *= t*k; s += t]; s!/m];
    edges[v_] := Sum[GCD[v[[i]], v[[j]]], {i, 2, Length[v]}, {j, 1, i - 1}] + Total[Quotient[v, 2]];
    a[n_] := Module[{s = 0}, Do[s += permcount[p]*2^edges[p], {p, IntegerPartitions[n]}]; s/n!];
    Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Jul 05 2018, after Andrew Howroyd *)
    b[n_, i_, l_] := If[n==0 || i==1, 1/n!*2^(Function[p, Sum[Ceiling[(p[[j]]-1 )/2]+Sum[GCD[p[[k]], p[[j]]], {k, 1, j-1}], {j, 1, Length[p]}]][Join[l, Table[1, {n}]]]), Sum[b[n-i*j, i-1, Join[l, Table[i, {j}]]]/j!/i^j, {j, 0, n/i}]];
    a[n_] := b[n, n, {}];
    a /@ Range[0, 20] (* Jean-François Alcover, Dec 03 2019, after Alois P. Heinz *)
  • PARI
    permcount(v) = {my(m=1,s=0,k=0,t); for(i=1,#v,t=v[i]; k=if(i>1&&t==v[i-1],k+1,1); m*=t*k;s+=t); s!/m}
    edges(v) = {sum(i=2, #v, sum(j=1, i-1, gcd(v[i],v[j]))) + sum(i=1, #v, v[i]\2)}
    a(n) = {my(s=0); forpart(p=n, s+=permcount(p)*2^edges(p)); s/n!} \\ Andrew Howroyd, Oct 22 2017
    
  • Python
    from itertools import combinations
    from math import prod, factorial, gcd
    from fractions import Fraction
    from sympy.utilities.iterables import partitions
    def A000088(n): return int(sum(Fraction(1<>1)*r+(q*r*(r-1)>>1) for q, r in p.items()),prod(q**r*factorial(r) for q, r in p.items())) for p in partitions(n))) # Chai Wah Wu, Jul 02 2024
  • Sage
    def a(n):
        return len(list(graphs(n)))
    # Ralf Stephan, May 30 2014
    

Formula

a(n) = 2^binomial(n, 2)/n!*(1+(n^2-n)/2^(n-1)+8*n!/(n-4)!*(3*n-7)*(3*n-9)/2^(2*n)+O(n^5/2^(5*n/2))) (see Harary, Palmer reference). - Vladeta Jovovic and Benoit Cloitre, Feb 01 2003
a(n) = 2^binomial(n, 2)/n!*[1+2*n$2*2^{-n}+8/3*n$3*(3n-7)*2^{-2n}+64/3*n$4*(4n^2-34n+75)*2^{-3n}+O(n^8*2^{-4*n})] where n$k is the falling factorial: n$k = n(n-1)(n-2)...(n-k+1). - Keith Briggs, Oct 24 2005
From David Pasino (davepasino(AT)yahoo.com), Jan 31 2009: (Start)
a(n) = a(n, 2), where a(n, t) is the number of t-uniform hypergraphs on n unlabeled nodes (cf. A000665 for t = 3 and A051240 for t = 4).
a(n, t) = Sum_{c : 1*c_1+2*c_2+...+n*c_n=n} per(c)*2^f(c), where:
..per(c) = 1/(Product_{i=1..n} c_i!*i^c_i);
..f(c) = (1/ord(c)) * Sum_{r=1..ord(c)} Sum_{x : 1*x_1+2*x_2+...+t*x_t=t} Product_{k=1..t} binomial(y(r, k; c), x_k);
..ord(c) = lcm{i : c_i>0};
..y(r, k; c) = Sum_{s|r : gcd(k, r/s)=1} s*c_(k*s) is the number of k-cycles of the r-th power of a permutation of type c. (End)
a(n) ~ 2^binomial(n,2)/n! [see Flajolet and Sedgewick p. 106, Gross and Yellen, p. 519, etc.]. - N. J. A. Sloane, Nov 11 2013
For asymptotics see also Lupanov 1959, 1960, also Turner and Kautz, p. 18. - N. J. A. Sloane, Apr 08 2014
a(n) = G(1) where G(z) = (1/n!) Sum_g det(I-g z^2)/det(I-g z) and g runs through the natural matrix n X n representation of the pair group A^2_n (for A^2_n see F. Harary and E. M. Palmer, Graphical Enumeration, page 83). - Leonid Bedratyuk, May 02 2015
From Keith Briggs, Jun 24 2016: (Start)
a(n) = 2^binomial(n,2)/n!*(
1+
2^( -n + 1)*n$2+
2^(-2*n + 3)*n$3*(n-7/3)+
2^(-3*n + 6)*n$4*(4*n^2/3 - 34*n/3 + 25) +
2^(-4*n + 10)*n$5*(8*n^3/3 - 142*n^2/3 + 2528*n/9 - 24914/45) +
2^(-5*n + 15)*n$6*(128*n^4/15 - 2296*n^3/9 + 25604*n^2/9 - 630554*n/45 + 25704) +
2^(-6*n + 21)*n$7*(2048*n^5/45 - 18416*n^4/9 + 329288*n^3/9 - 131680816*n^2/405 + 193822388*n/135 - 7143499196/2835) + ...),
where n$k is the falling factorial: n$k = n(n-1)(n-2)...(n-k+1), using the method of Wright 1969.
(End)
a(n) = 1/n*Sum_{k=1..n} a(n-k)*A003083(k). - Andrey Zabolotskiy, Aug 11 2020

Extensions

Harary gives an incorrect value for a(8); compare A007149

A000055 Number of trees with n unlabeled nodes.

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 6, 11, 23, 47, 106, 235, 551, 1301, 3159, 7741, 19320, 48629, 123867, 317955, 823065, 2144505, 5623756, 14828074, 39299897, 104636890, 279793450, 751065460, 2023443032, 5469566585, 14830871802, 40330829030, 109972410221, 300628862480, 823779631721, 2262366343746, 6226306037178
Offset: 0

Views

Author

Keywords

Comments

Also, number of unlabeled 2-gonal 2-trees with n-1 2-gons, for n>0. [Corrected by Andrei Zabolotskii, Jul 29 2025]
Main diagonal of A054924.
Left border of A157905. - Gary W. Adamson, Mar 08 2009
From Robert Munafo, Jan 24 2010: (Start)
Also counts classifications of n items that require exactly n-1 binary partitions; see Munafo link at A005646, also A171871 and A171872.
The 11 trees for n = 7 are illustrated at the Munafo web link.
Link to A171871/A171872 conjectured by Robert Munafo, then proved by Andrew Weimholt and Franklin T. Adams-Watters on Dec 29 2009. (End)
This is also "Number of tree perfect graphs on n nodes" [see Hougardy]. - N. J. A. Sloane, Dec 04 2015
For n > 0, a(n) is the number of ways to arrange n-1 unlabeled non-intersecting circles on a sphere. - Vladimir Reshetnikov, Aug 25 2016
All trees for n=1 through n=12 are depicted in Chapter 1 of the Steinbach reference. On p. 6 appear encircled two trees (with n=10) which seem inequivalent only when considered as ordered (planar) trees. Earlier instances of such possibly (in)equivalent trees could appear from n=6 on (and from n=9 on without equivalence modulo plane symmetry) but are not drawn separately there. - M. F. Hasler, Aug 29 2017

Examples

			a(1) = 1 [o]; a(2) = 1 [o-o]; a(3) = 1 [o-o-o];
a(4) = 2 [o-o-o and o-o-o-o]
            |
            o
G.f. = 1 + x + x^2 + x^3 + 2*x^4 + 3*x^5 + 6*x^6 + 11*x^7 + 23*x^8 + ...
		

References

  • F. Bergeron, G. Labelle and P. Leroux, Combinatorial Species and Tree-Like Structures, Camb. 1998, p. 279.
  • Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, page 55.
  • N. L. Biggs et al., Graph Theory 1736-1936, Oxford, 1976, p. 49.
  • A. Cayley, On the analytical forms called trees, with application to the theory of chemical combinations, Reports British Assoc. Advance. Sci. 45 (1875), 257-305 = Math. Papers, Vol. 9, 427-460 (see p. 459).
  • S. R. Finch, Mathematical Constants, Cambridge, 2003, pp. 295-316.
  • J. L. Gross and J. Yellen, eds., Handbook of Graph Theory, CRC Press, 2004; p. 526.
  • F. Harary, Graph Theory. Addison-Wesley, Reading, MA, 1969, p. 232.
  • F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 58 and 244.
  • D. E. Knuth, Fundamental Algorithms, 3d Ed. 1997, pp. 386-88.
  • R. C. Read and R. J. Wilson, An Atlas of Graphs, Oxford, 1998.
  • J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 138.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000676 (centered trees), A000677 (bicentered trees), A027416 (trees with a centroid), A102011 (trees with a bicentroid), A034853 (refined by diameter), A238414 (refined by maximum vertex degree).
Cf. A000081 (rooted trees), A000272 (labeled trees), A000169 (labeled rooted trees), A212809 (radius of convergence).
Cf. A036361 (labeled 2-trees), A036362 (labeled 3-trees), A036506 (labeled 4-trees), A054581 (unlabeled 2-trees).
Cf. A157904, A157905, A005195 (Euler transform = forests), A095133 (multisets).
Column 0 of A335362 and A034799.
Related to A005646; see A171871 and A171872.

Programs

  • Haskell
    import Data.List (generic_index)
    import Math.OEIS (getSequenceByID)
    triangle x = (x * x + x) `div` 2
    a000055 n = let {r = genericIndex (fromJust (getSequenceByID "A000081")); (m, nEO) = divMod n 2}
                in  r n - sum (zipWith (*) (map r [0..m]) (map r [n, n-1..]))
                    + (1-nEO) * (triangle (r m + 1))
    -- Walt Rorie-Baety, Jun 12 2021
    
  • Magma
    N := 30; P := PowerSeriesRing(Rationals(),N+1); f := func< A | x*&*[Exp(Evaluate(A,x^k)/k) : k in [1..N]]>; G := x; for i in [1..N] do G := f(G); end for; G000081 := G; G000055 := 1 + G - G^2/2 + Evaluate(G,x^2)/2; A000055 := Eltseq(G000055); // Geoff Baileu (geoff(AT)maths.usyd.edu.au), Nov 30 2009
    
  • Maple
    G000055 := series(1+G000081-G000081^2/2+subs(x=x^2,G000081)/2,x,31); A000055 := n->coeff(G000055,x,n); # where G000081 is g.f. for A000081 starting with n=1 term
    with(numtheory): b:= proc(n) option remember; `if`(n<=1, n, (add(add(d*b(d), d=divisors(j)) *b(n-j), j=1..n-1))/ (n-1)) end: a:= n-> `if`(n=0, 1, b(n) -(add(b(k) *b(n-k), k=0..n) -`if`(irem(n, 2)=0, b(n/2), 0))/2):
    seq(a(n), n=0..50);
    # Alois P. Heinz, Aug 21 2008
    # Program to create b-file b000055.txt:
    A000081 := proc(n) option remember; local d, j;
    if n <= 1 then n else
        add(add(d*procname(d),d=numtheory[divisors](j))*procname(n-j),j=1..n-1)/(n-1);
    fi end:
    A000055 := proc(nmax) local a81, n, t, a, j, i ;
    a81 := [seq(A000081(i), i=0..nmax)] ; a := [] ;
    for n from 0 to nmax do
        if n = 0 then
            t := 1+op(n+1, a81) ;
        else
            t := op(n+1, a81) ;
        fi;
        if type(n, even) then
            t := t-op(1+n/2, a81)^2/2 ;
            t := t+op(1+n/2, a81)/2 ;
        fi;
        for j from 0 to (n-1)/2 do
            t := t-op(j+1, a81)*op(n-j+1, a81) ;
        od:
        a := [op(a), t] ;
    od:
    a end:
    L := A000055(1000) ;
    #  R. J. Mathar, Mar 06 2009
  • Mathematica
    s[n_, k_] := s[n, k] = a[n + 1 - k] + If[n < 2k, 0, s[n - k, k]]; a[1] = 1; a[n_] := a[n] = Sum[a[i] s[n-1, i] i, {i, 1, n-1}] / (n-1); Table[a[i] - Sum[a[j] a[i-j], {j, 1, i/2}] + If[OddQ[i], 0, a[i/2] (a[i/2] + 1)/2], {i, 1, 50}] (* Robert A. Russell *)
    b[0] = 0; b[1] = 1; b[n_] := b[n] = Sum[d*b[d]*b[n-j], {j, 1, n-1}, {d, Divisors[j]}]/(n-1); a[0] = 1; a[n_] := b[n] - (Sum[b[k]*b[n-k], {k, 0, n}] - If[Mod[n, 2] == 0, b[n/2], 0])/2; Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Apr 09 2014, after Alois P. Heinz *)
  • PARI
    {a(n) = local(A, A1, an, i, t); if( n<2, n>=0, an = Vec(A = A1 = 1 + O('x^n)); for(m=2, n, i=m\2; an[m] = sum(k=1, i, an[k] * an[m-k]) + (t = polcoeff( if( m%2, A *= (A1 - 'x^i)^-an[i], A), m-1))); t + if( n%2==0, binomial( -polcoeff(A, i-1), 2)))}; /* Michael Somos */
    
  • PARI
    N=66;  A=vector(N+1, j, 1);
    for (n=1, N, A[n+1] = 1/n * sum(k=1, n, sumdiv(k, d, d * A[d]) * A[n-k+1] ) );
    A000081=concat([0], A);
    H(t)=subst(Ser(A000081, 't), 't, t);
    x='x+O('x^N);
    Vec( 1 + H(x) - 1/2*( H(x)^2 - H(x^2) ) )
    \\ Joerg Arndt, Jul 10 2014
    
  • Python
    # uses function from A000081
    def A000055(n): return 1 if n == 0 else A000081(n)-sum(A000081(i)*A000081(n-i) for i in range(1,n//2+1)) + (0 if n % 2 else (A000081(n//2)+1)*A000081(n//2)//2) # Chai Wah Wu, Feb 03 2022
  • SageMath
    [len(list(graphs.trees(n))) for n in range(16)] # Peter Luschny, Mar 01 2020
    

Formula

G.f.: A(x) = 1 + T(x) - T^2(x)/2 + T(x^2)/2, where T(x) = x + x^2 + 2*x^3 + ... is the g.f. for A000081.
a(n) ~ A086308 * A051491^n * n^(-5/2). - Vaclav Kotesovec, Jan 04 2013
a(n) = A000081(n) - A217420(n+1), n > 0. - R. J. Mathar, Sep 19 2016
a(n) = A000676(n) + A000677(n). - R. J. Mathar, Aug 13 2018
a(n) = A000081(n) - (Sum_{1<=i<=j, i+j=n} A000081(i)*A000081(j)) + (1-(-1)^(n-1)) * binomial(A000081(n/2)+1,2) / 2 [Li, equation 4.2]. - Walt Rorie-Baety, Jul 05 2021

A001349 Number of simple connected graphs on n unlabeled nodes.

Original entry on oeis.org

1, 1, 1, 2, 6, 21, 112, 853, 11117, 261080, 11716571, 1006700565, 164059830476, 50335907869219, 29003487462848061, 31397381142761241960, 63969560113225176176277, 245871831682084026519528568, 1787331725248899088890200576580, 24636021429399867655322650759681644
Offset: 0

Views

Author

Keywords

Comments

The singleton graph K_1 is considered connected even though it is conventionally taken to have vertex connectivity 0. - Eric W. Weisstein, Jul 21 2020
Inverse Euler transform of A000088 but with a(0) omitted so that Sum_{k>=0} A000088(n) * x^n = Product_{k>0} (1 - x^k)^-a(k). It is debatable if there is a connected graph with 0 nodes and so a(0)=0 or better start from a(1)=1. - Michael Somos, Jun 01 2013. [As Harary once remarked in a famous paper ("Is the null-graph a pointless concept?"), the empty graph has every property, which is why a(0)=1. - N. J. A. Sloane, Apr 08 2014]

Examples

			G.f. = 1 + x + x^2 + 2*x^3 + 6*x^4 + 21*x^5 + 112*x^6 + 853*x^7 + ....
		

References

  • P. Butler and R. W. Robinson, On the computer calculation of the number of nonseparable graphs, pp. 191 - 208 of Proc. Second Caribbean Conference Combinatorics and Computing (Bridgetown, 1977). Ed. R. C. Read and C. C. Cadogan. University of the West Indies, Cave Hill Campus, Barbados, 1977. vii+223 pp.
  • F. Harary and R. C. Read, Is the null-graph a pointless concept?, pp. 37-44 of Graphs and Combinatorics (Washington, Jun 1973), Ed. by R. A. Bari and F. Harary. Lect. Notes Math., Vol. 406. Springer-Verlag, 1974.
  • F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, page 48, c(x). Also page 242.
  • Lupanov, O. B. Asymptotic estimates of the number of graphs with n edges. (Russian) Dokl. Akad. Nauk SSSR 126 1959 498--500. MR0109796 (22 #681).
  • Lupanov, O. B. "On asymptotic estimates of the number of graphs and networks with n edges." Problems of Cybernetics [in Russian], Moscow 4 (1960): 5-21.
  • R. C. Read and R. J. Wilson, An Atlas of Graphs, Oxford, 1998.
  • R. W. Robinson, Numerical implementation of graph counting algorithms, AGRC Grant, Math. Dept., Univ. Newcastle, Australia, 1978.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • Robin J. Wilson, Introduction to Graph Theory, Academic Press, 1972. (But see A126060!)

Crossrefs

Cf. A000088, A002218, A006290, A000719, A201922 (Multiset transform).
Row sums of A054924.

Programs

  • Maple
    # To produce all connected graphs on 4 nodes, for example (from N. J. A. Sloane, Oct 07 2013):
    with(GraphTheory):
    L:=[NonIsomorphicGraphs](4,output=graphs,outputform=adjacency, restrictto=connected):
  • Mathematica
    <<"Combinatorica`"; max = 19; A000088 = Table[ NumberOfGraphs[n], {n, 0, max}]; f[x_] = 1 - Product[ 1/(1 - x^k)^a[k], {k, 1, max}]; a[0] = a[1] = a[2] = 1; coes = CoefficientList[ Series[ f[x], {x, 0, max}], x]; sol = First[ Solve[ Thread[ Rest[ coes + A000088 ] == 0]]]; Table[ a[n], {n, 0, max}] /. sol (* Jean-François Alcover, Nov 24 2011 *)
    terms = 20;
    mob[m_, n_] := If[Mod[m, n] == 0, MoebiusMu[m/n], 0];
    EULERi[b_] := Module[{a, c, i, d}, c = {}; For[i = 1, i <= Length[b], i++, c = Append[c, i*b[[i]] - Sum[c[[d]]*b[[i - d]], {d, 1, i - 1}]]]; a = {}; For[i = 1, i <= Length[b], i++, a = Append[a, (1/i)*Sum[mob[i, d]*c[[d]], {d, 1, i}]]]; Return[a]];
    permcount[v_] := Module[{m = 1, s = 0, k = 0, t}, For[i = 1, i <= Length[v], i++, t = v[[i]]; k = If[i > 1 && t == v[[i - 1]], k + 1, 1]; m *= t*k; s += t]; s!/m];
    edges[v_] := Sum[GCD[v[[i]], v[[j]]], {i, 2, Length[v]}, {j, 1, i - 1}] + Total[Quotient[v, 2]];
    a88[n_] := Module[{s = 0}, Do[s += permcount[p]*2^edges[p], {p, IntegerPartitions[n]}]; s/n!];
    Join[{1}, EULERi[Array[a88, terms]]] (* Jean-François Alcover, Jul 28 2018, after Andrew Howroyd *)
  • Python
    from functools import lru_cache
    from itertools import combinations
    from fractions import Fraction
    from math import prod, gcd, factorial
    from sympy import mobius, divisors
    from sympy.utilities.iterables import partitions
    def A001349(n):
        if n == 0: return 1
        @lru_cache(maxsize=None)
        def b(n): return int(sum(Fraction(1<>1)*r+(q*r*(r-1)>>1) for q, r in p.items()),prod(q**r*factorial(r) for q, r in p.items())) for p in partitions(n)))
        @lru_cache(maxsize=None)
        def c(n): return n*b(n)-sum(c(k)*b(n-k) for k in range(1,n))
        return sum(mobius(n//d)*c(d) for d in divisors(n,generator=True))//n # Chai Wah Wu, Jul 02-03 2024
  • Sage
    property=lambda G: G.is_connected()
    def a(n):
        return len([1 for G in graphs(n) if property(G)])
    # Ralf Stephan, May 30 2014
    

Formula

For asymptotics see Lupanov 1959, 1960, also Turner and Kautz, p. 18. - N. J. A. Sloane, Apr 08 2014

Extensions

More terms from Ronald C. Read

A000798 Number of different quasi-orders (or topologies, or transitive digraphs) with n labeled elements.

Original entry on oeis.org

1, 1, 4, 29, 355, 6942, 209527, 9535241, 642779354, 63260289423, 8977053873043, 1816846038736192, 519355571065774021, 207881393656668953041, 115617051977054267807460, 88736269118586244492485121, 93411113411710039565210494095, 134137950093337880672321868725846, 261492535743634374805066126901117203
Offset: 0

Views

Author

Keywords

Comments

From Altug Alkan, Dec 18 2015 and Feb 28 2017: (Start)
a(p^k) == k+1 (mod p) for all primes p. This is proved by Kizmaz at On The Number Of Topologies On A Finite Set link. For proof see Theorem 2.4 in page 2 and 3. So a(19) == 2 (mod 19).
a(p+n) == A265042(n) (mod p) for all primes p. This is also proved by Kizmaz at related link, see Theorem 2.7 in page 4. If n=2 and p=17, a(17+2) == A265042(2) (mod 17), that is a(19) == 51 (mod 17). So a(19) is divisible by 17.
In conclusion, a(19) is a number of the form 323*n - 17. (End)
The BII-numbers of finite topologies without their empty set are given by A326876. - Gus Wiseman, Aug 01 2019
From Tian Vlasic, Feb 23 2022: (Start)
Although no general formula is known for a(n), by considering the number of topologies with a fixed number of open sets, it is possible to explicitly represent the sequence in terms of Stirling numbers of the second kind.
For example: a(n,3) = 2*S(n,2), a(n,4) = S(n,2) + 6*S(n,3), a(n,5) = 6*S(n,3) + 24*S(n,4).
Lower and upper bounds are known: 2^n <= a(n) <= 2^(n*(n-1)), n > 1.
This follows from the fact that there are 2^(n*(n-1)) reflexive relations on a set with n elements.
Furthermore: a(n+1) <= a(n)*(3a(n)+1). (End)

Examples

			From _Gus Wiseman_, Aug 01 2019: (Start)
The a(3) = 29 topologies are the following (empty sets not shown):
  {123}  {1}{123}   {1}{12}{123}  {1}{2}{12}{123}   {1}{2}{12}{13}{123}
         {2}{123}   {1}{13}{123}  {1}{3}{13}{123}   {1}{2}{12}{23}{123}
         {3}{123}   {1}{23}{123}  {2}{3}{23}{123}   {1}{3}{12}{13}{123}
         {12}{123}  {2}{12}{123}  {1}{12}{13}{123}  {1}{3}{13}{23}{123}
         {13}{123}  {2}{13}{123}  {2}{12}{23}{123}  {2}{3}{12}{23}{123}
         {23}{123}  {2}{23}{123}  {3}{13}{23}{123}  {2}{3}{13}{23}{123}
                    {3}{12}{123}
                    {3}{13}{123}        {1}{2}{3}{12}{13}{23}{123}
                    {3}{23}{123}
(End)
		

References

  • K. K.-H. Butler and G. Markowsky, Enumeration of finite topologies, Proc. 4th S-E Conf. Combin., Graph Theory, Computing, Congress. Numer. 8 (1973), 169-184.
  • S. D. Chatterji, The number of topologies on n points, Manuscript, 1966.
  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 229.
  • E. D. Cooper, Representation and generation of finite partially ordered sets, Manuscript, no date.
  • E. N. Gilbert, A catalog of partially ordered systems, unpublished memorandum, Aug 08, 1961.
  • F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 243.
  • Levinson, H.; Silverman, R. Topologies on finite sets. II. Proceedings of the Tenth Southeastern Conference on Combinatorics, Graph Theory and Computing (Florida Atlantic Univ., Boca Raton, Fla., 1979), pp. 699--712, Congress. Numer., XXIII-XXIV, Utilitas Math., Winnipeg, Man., 1979. MR0561090 (81c:54006)
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • For further references concerning the enumeration of topologies and posets see under A001035.
  • G.H. Patil and M.S. Chaudhary, A recursive determination of topologies on finite sets, Indian Journal of Pure and Applied Mathematics, 26, No. 2 (1995), 143-148.

Crossrefs

Row sums of A326882.
Cf. A001035 (labeled posets), A001930 (unlabeled topologies), A000112 (unlabeled posets), A006057.
Sequences in the Erné (1974) paper: A000798, A001035, A006056, A006057, A001929, A001927, A006058, A006059, A000110.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Subsets[Range[n],{1,n}]],Union@@#==Range[n]&&SubsetQ[#,Union[Union@@@Tuples[#,2],DeleteCases[Intersection@@@Tuples[#,2],{}]]]&]],{n,0,3}] (* Gus Wiseman, Aug 01 2019 *)

Formula

a(n) = Sum_{k=0..n} Stirling2(n, k)*A001035(k).
E.g.f.: A(exp(x) - 1) where A(x) is the e.g.f. for A001035. - Geoffrey Critzer, Jul 28 2014
It is known that log_2(a(n)) ~ n^2/4. - Tian Vlasic, Feb 23 2022

Extensions

Two more terms from Jobst Heitzig (heitzig(AT)math.uni-hannover.de), Jul 03 2000
a(17)-a(18) are from Brinkmann's and McKay's paper. - Vladeta Jovovic, Jun 10 2007

A000664 Number of graphs with n edges.

Original entry on oeis.org

1, 1, 2, 5, 11, 26, 68, 177, 497, 1476, 4613, 15216, 52944, 193367, 740226, 2960520, 12334829, 53394755, 239544624, 1111261697, 5320103252, 26237509076, 133087001869, 693339241737, 3705135967663, 20286965943329, 113694201046379, 651571521170323, 3815204365835840, 22806847476040913, 139088381010541237, 864777487052916454
Offset: 0

Views

Author

Keywords

Comments

These are simple graphs, unlabeled, with no isolated nodes, but are not necessarily connected.

Examples

			n=1: o-o (1)
n=2: o-o o-o, o-o-o (2)
n=3: o-o o-o o-o, o-o-o o-o, o-o-o-o, Y, triangle (5)
n=4: o-o o-o o-o o-o, o-o-o o-o o-o, o-o-o o-o-o, o-o o-o-o-o, o-o Y, o-o triangle,
o-o-o-o-o, >o-o-o, ><, square, triangle with tail (11)
		

References

  • W. Oberschelp, Kombinatorische Anzahlbestimmungen in Relationen, Math. Ann., 174 (1967), 53-78.
  • J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 146.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Row sums of A275421.
Cf. also A000088, A000055.

Programs

  • Mathematica
    << Combinatorica`; Table[NumberOfGraphs[2 n, n], {n, 0, 10}] (* Eric W. Weisstein, Oct 30 2017 *)
    << Combinatorica`; Table[Coefficient[GraphPolynomial[2 n, x], x, n], {n, 0, 10}] (* Eric W. Weisstein, Oct 30 2017 *)

Formula

a(n) = A008406(2*n,n). - Max Alekseyev, Sep 13 2016
Euler transform of A002905 (ignoring A002905(0)). - Franklin T. Adams-Watters Jul 03 2009

Extensions

More terms from Vladeta Jovovic, Jan 08 2000, Aug 14 2007
Edited by N. J. A. Sloane, Feb 26 2008
Example for n=2 corrected by Adrian Falcone (falcone(AT)gmail.com), Jan 28 2009
Zeroth term inserted by Franklin T. Adams-Watters, Jul 03 2009
a(25)-a(26) from Max Alekseyev, Sep 19 2009
a(27)-a(60) from Max Alekseyev, Sep 07 2016

A055277 Triangle T(n,k) of number of rooted trees with n nodes and k leaves, 1 <= k <= n.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 4, 3, 1, 0, 1, 6, 8, 4, 1, 0, 1, 9, 18, 14, 5, 1, 0, 1, 12, 35, 39, 21, 6, 1, 0, 1, 16, 62, 97, 72, 30, 7, 1, 0, 1, 20, 103, 212, 214, 120, 40, 8, 1, 0, 1, 25, 161, 429, 563, 416, 185, 52, 9, 1, 0, 1, 30, 241, 804, 1344, 1268, 732, 270, 65, 10, 1, 0
Offset: 1

Views

Author

Christian G. Bower, May 09 2000

Keywords

Comments

Harary denotes the g.f. as P(x, y) on page 33 "... , and let P(x,y) = Sum Sum P_{nm} x^ny^m where P_{nm} is the number of planted trees with n points and m endpoints, in which again the plant has not been counted either as a point or as an endpoint." - Michael Somos, Nov 02 2014

Examples

			From _Joerg Arndt_, Aug 18 2014: (Start)
Triangle starts:
01: 1
02: 1    0
03: 1    1    0
04: 1    2    1    0
05: 1    4    3    1    0
06: 1    6    8    4    1    0
07: 1    9   18   14    5    1    0
08: 1   12   35   39   21    6    1    0
09: 1   16   62   97   72   30    7    1    0
10: 1   20  103  212  214  120   40    8    1    0
11: 1   25  161  429  563  416  185   52    9    1    0
12: 1   30  241  804 1344 1268  732  270   65   10    1    0
13: 1   36  348 1427 2958 3499 2544 1203  378   80   11    1    0
...
The trees with n=5 nodes, as (preorder-) level sequences, together with their number of leaves, and an ASCII rendering, are:
:
:     1:  [ 0 1 2 3 4 ]   1
:  O--o--o--o--o
:
:     2:  [ 0 1 2 3 3 ]   2
:  O--o--o--o
:        .--o
:
:     3:  [ 0 1 2 3 2 ]   2
:  O--o--o--o
:     .--o
:
:     4:  [ 0 1 2 3 1 ]   2
:  O--o--o--o
:  .--o
:
:     5:  [ 0 1 2 2 2 ]   3
:  O--o--o
:     .--o
:     .--o
:
:     6:  [ 0 1 2 2 1 ]   3
:  O--o--o
:     .--o
:  .--o
:
:     7:  [ 0 1 2 1 2 ]   2
:  O--o--o
:  .--o--o
:
:     8:  [ 0 1 2 1 1 ]   3
:  O--o--o
:  .--o
:  .--o
:
:     9:  [ 0 1 1 1 1 ]   4
:  O--o
:  .--o
:  .--o
:  .--o
:
This gives [1, 4, 3, 1, 0], row n=5 of the triangle.
(End)
G.f. = x*(y + x*y + x^2*(y + y^2) + x^3*(y + 2*y^2 + y^3) + x^4*(y + 4*y^2 + 3*x^3 + y^4) + ...).
		

References

  • F. Harary, Recent results on graphical enumeration, pp. 29-36 of Graphs and Combinatorics (Washington, Jun 1973), Ed. by R. A. Bari and F. Harary. Lect. Notes Math., Vol. 406. Springer-Verlag, 1974.

Crossrefs

Programs

  • Mathematica
    rut[n_]:=rut[n]=If[n===1,{{}},Join@@Function[c,Union[Sort/@Tuples[rut/@c]]]/@IntegerPartitions[n-1]];
    Table[Length[Select[rut[n],Count[#,{},{-2}]===k&]],{n,13},{k,n}] (* Gus Wiseman, Mar 19 2018 *)
  • PARI
    {T(n, k) = my(A = O(x)); if(k<1 || k>n, 0, for(j=1, n, A = x*(y - 1  + exp( sum(i=1, j, 1/i * subst( subst( A + x * O(x^(j\i)), x, x^i), y, y^i) ) ))); polcoeff( polcoeff(A, n), k))}; /* Michael Somos, Aug 24 2015 */

Formula

G.f. satisfies A(x, y) = x*y + x*EULER(A(x, y)) - x. Shifts up under EULER transform.
G.f. satisfies A(x, y) = x*y - x + x * exp(Sum_{i>0} A(x^i, y^i) / i). [Harary, p. 34, equation (10)]. - Michael Somos, Nov 02 2014
Sum_k T(n, k) = A000081(n). - Michael Somos, Aug 24 2015

A000112 Number of partially ordered sets ("posets") with n unlabeled elements.

Original entry on oeis.org

1, 1, 2, 5, 16, 63, 318, 2045, 16999, 183231, 2567284, 46749427, 1104891746, 33823827452, 1338193159771, 68275077901156, 4483130665195087
Offset: 0

Views

Author

Keywords

Comments

Also number of fixed effects ANOVA models with n factors, which may be both crossed and nested.

Examples

			R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 1, Chap. 3, page 98, Fig. 3-1 (or 2nd. ed., Fig. 3.1, p. 243) shows the unlabeled posets with <= 4 points.
From _Gus Wiseman_, Aug 14 2019: (Start)
Also the number of unlabeled T_0 topologies with n points. For example, non-isomorphic representatives of the a(4) = 16 topologies are:
  {}{1}{12}{123}{1234}
  {}{1}{2}{12}{123}{1234}
  {}{1}{12}{13}{123}{1234}
  {}{1}{12}{123}{124}{1234}
  {}{1}{2}{12}{13}{123}{1234}
  {}{1}{2}{12}{123}{124}{1234}
  {}{1}{12}{13}{123}{124}{1234}
  {}{1}{2}{12}{13}{123}{124}{1234}
  {}{1}{2}{12}{13}{123}{134}{1234}
  {}{1}{2}{3}{12}{13}{23}{123}{1234}
  {}{1}{2}{12}{13}{24}{123}{124}{1234}
  {}{1}{12}{13}{14}{123}{124}{134}{1234}
  {}{1}{2}{3}{12}{13}{23}{123}{124}{1234}
  {}{1}{2}{12}{13}{14}{123}{124}{134}{1234}
  {}{1}{2}{3}{12}{13}{14}{23}{123}{124}{134}{1234}
  {}{1}{2}{3}{4}{12}{13}{14}{23}{24}{34}{123}{124}{134}{234}{1234}
(End)
		

References

  • G. Birkhoff, Lattice Theory, 1961, p. 4.
  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 60.
  • E. D. Cooper, Representation and generation of finite partially ordered sets, Manuscript, no date.
  • J. L. Davison, Asymptotic enumeration of partial orders. Proceedings of the seventeenth Southeastern international conference on combinatorics, graph theory, and computing (Boca Raton, Fla., 1986). Congr. Numer. 53 (1986), 277--286. MR0885256 (88c:06001)
  • E. N. Gilbert, A catalog of partially ordered systems, unpublished memorandum, Aug 08, 1961.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 1, Chap. 3, pages 96ff; Vol. I, 2nd. ed., Chap. 3, pp. 241ff; Vol. 2, Problem 5.39, p. 88.
  • For further references concerning the enumeration of topologies and posets see under A001035.

Crossrefs

Cf. A000798 (labeled topologies), A001035 (labeled posets), A001930 (unlabeled topologies), A006057.
Cf. A079263, A079265, A065066 (refined by maximal elements), A342447 (refined by number of arcs).
Row sums of A263859. Euler transform of A000608.

Extensions

a(15)-a(16) are from Brinkmann's and McKay's paper. - Vladeta Jovovic, Jan 04 2006

A005195 Number of forests with n unlabeled nodes.

Original entry on oeis.org

1, 1, 2, 3, 6, 10, 20, 37, 76, 153, 329, 710, 1601, 3658, 8599, 20514, 49905, 122963, 307199, 775529, 1977878, 5086638, 13184156, 34402932, 90328674, 238474986, 632775648, 1686705630, 4514955632, 12132227370, 32717113805, 88519867048, 240235675303
Offset: 0

Views

Author

Keywords

Comments

Same as "Number of forests with n nodes that are perfect graphs" [see Hougardy]. - N. J. A. Sloane, Dec 04 2015
Number of unlabeled acyclic graphs on n vertices. The labeled version is A001858. The covering case is A144958, connected A000055. - Gus Wiseman, Apr 29 2024

Examples

			From _Gus Wiseman_, Apr 29 2024: (Start)
Edge-sets of non-isomorphic representatives of the a(0) = 1 through a(5) = 10 forests:
  {}  {}  {}    {}       {}          {}
          {12}  {12}     {12}        {12}
                {13,23}  {12,34}     {12,34}
                         {13,23}     {13,23}
                         {13,24,34}  {12,35,45}
                         {14,24,34}  {13,24,34}
                                     {14,24,34}
                                     {13,24,35,45}
                                     {14,25,35,45}
                                     {15,25,35,45}
(End)
		

References

  • F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, pp. 58-59.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A095133 (by number of trees), A136605 (by number of edges).
A diagonal of A144215.
The connected case is A000055.
The labeled version is A001858.
The covering case is A144958, labeled A105784.
For triangles instead of cycles we have A006785, covering A372169.
Unique cycle: A236570 (labeled A372193), covering A372191 (labeled A372195).
A006125 counts simple graphs, unlabeled A000088.
A006129 counts covering graphs, unlabeled A002494.

Programs

  • Mathematica
    EulerTransform[ seq_List ] := With[{m = Length[seq]}, CoefficientList[ Series[ Times @@ (1/(1 - x^Range[m])^seq), {x, 0, m}], x]];
    b[n_] := b[n] = If[n <= 1, n, Sum[ Sum[ d*b[d], {d, Divisors[j]}]*b[n - j], {j, 1, n - 1}]/(n - 1)];
    a55[n_] := a55[n] = If[n == 0, 1, b[n] - (Sum[ b[k]*b[n - k], {k, 0, n}] - If[Mod[n, 2] == 0, b[n/2], 0])/2]; A000055 = Table[ a55[n], {n, 1, 31}]; EulerTransform[ A000055 ] (* Jean-François Alcover, Mar 15 2012 *)

Formula

Euler transform of A000055: Product_{n>0} (1-x^n)^(-A000055(n)). a(n) = 1/n*Sum_{k=1..n} b(k)*a(n-k), where b(k) = Sum_{d divides k} d*A000055(d). - Vladeta Jovovic, Sep 05 2002
G.f.: exp(sum_{k>0} B(x^k)/k ), where B(x) = x + x^2 + x^3 + 2*x^4 + 3*x^5 + 6*x^6 + 11*x^7 + ... = C(x)-1 and C is the g.f. for A000055.
a(n) ~ c * d^n / n^(5/2), where d = A051491 = 2.9557652856519949747148..., c = 1.023158422... . - Vaclav Kotesovec, Nov 16 2014
First differences are A144958. - Gus Wiseman, Apr 29 2024

Extensions

More terms from Vladeta Jovovic, Sep 05 2002

A003216 Number of Hamiltonian graphs with n nodes.

Original entry on oeis.org

1, 0, 1, 3, 8, 48, 383, 6196, 177083, 9305118, 883156024, 152522187830, 48322518340547
Offset: 1

Views

Author

Keywords

Comments

a(1) could also be taken to be 0, but I prefer a(1) = 1. - N. J. A. Sloane, Oct 15 2006

References

  • J. P. Dolch, Names of Hamiltonian graphs, Proc. 4th S-E Conf. Combin., Graph Theory, Computing, Congress. Numer. 8 (1973), 259-271.
  • F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 219.
  • R. C. Read and R. J. Wilson, An Atlas of Graphs, Oxford, 1998.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Main diagonal of A325455 and of A325447 (for n>=3).
The labeled case is A326208.
The directed case is A326226 (with loops) or A326225 (without loops).
The case without loops is A326215.
Unlabeled simple graphs not containing a Hamiltonian cycle are A246446.
Unlabeled simple graphs containing a Hamiltonian path are A057864.

Formula

A000088(n) = a(n) + A246446(n). - Gus Wiseman, Jun 17 2019

Extensions

Extended to n=11 by Brendan McKay, Jul 15 1996
a(12) from Sean A. Irvine, Mar 17 2015
a(13) from A246446 added by Jan Goedgebeur, Sep 07 2019
Showing 1-10 of 83 results. Next