cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A368849 Triangle read by rows: T(n, k) = binomial(n, k - 1)*(k - 1)^(k - 1)*(n - k)*(n - k + 1)^(n - k).

Original entry on oeis.org

0, 0, 0, 0, 2, 0, 0, 18, 6, 0, 0, 192, 72, 48, 0, 0, 2500, 960, 720, 540, 0, 0, 38880, 15000, 11520, 9720, 7680, 0, 0, 705894, 272160, 210000, 181440, 161280, 131250, 0, 0, 14680064, 5647152, 4354560, 3780000, 3440640, 3150000, 2612736, 0
Offset: 0

Views

Author

Peter Luschny, Jan 11 2024

Keywords

Comments

A motivation for this triangle was to provide an alternative sum representation for A001864(n) = n! * Sum_{k=0..n-2} n^k/k!. See formula 3 and formula 15 in Riordan and Sloane.

Examples

			Triangle starts:
  [0] [0]
  [1] [0,        0]
  [2] [0,        2,       0]
  [3] [0,       18,       6,       0]
  [4] [0,      192,      72,      48,      0]
  [5] [0,     2500,     960,     720,     540,       0]
  [6] [0,    38880,   15000,   11520,    9720,    7680,       0]
  [7] [0,   705894,  272160,  210000,  181440,  161280,  131250,       0]
  [8] [0, 14680064, 5647152, 4354560, 3780000, 3440640, 3150000, 2612736, 0]
		

Crossrefs

T(n, 1) = A066274(n) for n >= 1.
T(n, 1)/(n - 1) = A000169(n) for n >= 2.
T(n, n - 1) = 2*A081133(n) for n >= 1.
Sum_{k=0..n} T(n, k) = A001864(n).
(Sum_{k=0..n} T(n, k)) / n = A000435(n) for n >= 1.
(Sum_{k=0..n} T(n, k)) * n / 2 = A262973(n) for n >= 1.
(Sum_{k=2..n} T(n, k)) / (2*n) = A057500(n) for n >= 1.
T(n, 1)/(n - 1) + (Sum_{k=2..n} T(n, k)) / (2*n) = A368951(n) for n >= 2.
Sum_{k=0..n} (-1)^(k-1) * T(n, k) = A368981(n).

Programs

  • Mathematica
    A368849[n_, k_] := Binomial[n, k-1] If[k == 1, 1, (k-1)^(k-1)] (n-k) (n-k+1)^(n-k);
    Table[A368849[n, k], {n, 0, 10}, {k, 0, n}] (* Paolo Xausa, Jan 13 2024 *)
  • SageMath
    def T(n, k):
        return binomial(n, k - 1)*(k - 1)^(k - 1)*(n - k)*(n - k + 1)^(n - k)
    for n in range(0, 9): print([n], [T(n, k) for k in range(n + 1)])