A368981
a(n) = Sum_{k=0..n} binomial(n, k - 1)*(1 - k)^(k - 1)*(n - k)*(n - k + 1)^(n - k).
Original entry on oeis.org
0, 0, 2, 12, 168, 1720, 33360, 492324, 12510848, 242010864, 7645282560, 183157788220, 6930019734528, 198083231524776, 8738660263983104, 290276762478721620, 14634486747811184640, 554012204526293864416, 31427811840457845964800, 1335650409538235449288812, 84210181959664202315202560
Offset: 0
-
A368981[n_] :=Sum[Binomial[n, k-1] If[k == 1, 1, (1-k)^(k-1)] (n-k) (n-k+1)^(n-k), {k, 0, n}];
Array[A368981, 25, 0] (* Paolo Xausa, Jan 13 2024 *)
-
def a(n):
return sum(binomial(n, k-1)*(1 - k)^(k - 1)*(n - k)*(n - k + 1)^(n - k)
for k in range(n + 1))
print([a(n) for n in range(0, 21)])
A369016
Triangle read by rows: T(n, k) = binomial(n - 1, k - 1) * (k - 1)^(k - 1) * (n - k) * (n - k + 1)^(n - k - 1).
Original entry on oeis.org
0, 0, 0, 0, 1, 0, 0, 6, 2, 0, 0, 48, 18, 12, 0, 0, 500, 192, 144, 108, 0, 0, 6480, 2500, 1920, 1620, 1280, 0, 0, 100842, 38880, 30000, 25920, 23040, 18750, 0, 0, 1835008, 705894, 544320, 472500, 430080, 393750, 326592, 0
Offset: 0
Triangle starts:
[0] [0]
[1] [0, 0]
[2] [0, 1, 0]
[3] [0, 6, 2, 0]
[4] [0, 48, 18, 12, 0]
[5] [0, 500, 192, 144, 108, 0]
[6] [0, 6480, 2500, 1920, 1620, 1280, 0]
[7] [0, 100842, 38880, 30000, 25920, 23040, 18750, 0]
[8] [0, 1835008, 705894, 544320, 472500, 430080, 393750, 326592, 0]
A368849,
A368982 and this sequence are alternative sum representation for
A001864 with different normalizations.
T(n, k) =
A368849(n, k) / n for n >= 1.
T(n, n - 1) =
A055897(n - 1) for n >= 2.
Sum_{k=0..n} T(n, k) =
A000435(n) for n >= 1.
Sum_{k=0..n} (-1)^(k+1)*T(n, k) =
A368981(n) / n for n >= 1.
-
T := (n, k) -> binomial(n-1, k-1)*(k-1)^(k-1)*(n-k)*(n-k+1)^(n-k-1):
seq(seq(T(n, k), k = 0..n), n=0..9);
-
A369016[n_, k_] := Binomial[n-1, k-1] If[k == 1, 1, (k-1)^(k-1)] (n-k) (n-k+1)^(n-k-1); Table[A369016[n, k], {n, 0, 10}, {k, 0, n}] (* Paolo Xausa, Jan 28 2024 *)
-
def T(n, k): return binomial(n-1, k-1)*(k-1)^(k-1)*(n-k)*(n-k+1)^(n-k-1)
for n in range(0, 9): print([T(n, k) for k in range(n + 1)])
A369019
Triangle read by rows: T(n, k) = binomial(n, k - 1)*(k - 1)^(k - 1)*k*(n - k + 1)^(n - k).
Original entry on oeis.org
0, 0, 1, 0, 2, 4, 0, 9, 12, 36, 0, 64, 72, 144, 432, 0, 625, 640, 1080, 2160, 6400, 0, 7776, 7500, 11520, 19440, 38400, 112500, 0, 117649, 108864, 157500, 241920, 403200, 787500, 2286144, 0, 2097152, 1882384, 2612736, 3780000, 5734400, 9450000, 18289152, 52706752
Offset: 0
Triangle starts:
[0] [0]
[1] [0, 1]
[2] [0, 2, 4]
[3] [0, 9, 12, 36]
[4] [0, 64, 72, 144, 432]
[5] [0, 625, 640, 1080, 2160, 6400]
[6] [0, 7776, 7500, 11520, 19440, 38400, 112500]
[7] [0, 117649, 108864, 157500, 241920, 403200, 787500, 2286144]
-
T := (n, k) -> binomial(n, k - 1)*(k - 1)^(k - 1)*k*(n - k + 1)^(n - k):
seq(seq(T(n, k), k = 0..n), n=0..9);
-
A369019[n_, k_] := Binomial[n, k-1] If[k == 1, 1, (k-1)^(k-1)] k (n-k+1)^(n-k);
Table[A369019[n, k], {n, 0, 10}, {k, 0, n}] (* Paolo Xausa, Jan 27 2024 *)
-
def A369019(n, k):
return binomial(n, k - 1)*(k - 1)^(k - 1)*k*(n - k + 1)^(n - k)
A368982
Triangle read by rows: T(n, k) = binomial(n, k - 1) * (k - 1)^(k - 1) * (n - k) * (n - k + 1)^(n - k) / 2.
Original entry on oeis.org
0, 0, 0, 0, 1, 0, 0, 9, 3, 0, 0, 96, 36, 24, 0, 0, 1250, 480, 360, 270, 0, 0, 19440, 7500, 5760, 4860, 3840, 0, 0, 352947, 136080, 105000, 90720, 80640, 65625, 0, 0, 7340032, 2823576, 2177280, 1890000, 1720320, 1575000, 1306368, 0
Offset: 0
Triangle starts:
[0] [0]
[1] [0, 0]
[2] [0, 1, 0]
[3] [0, 9, 3, 0]
[4] [0, 96, 36, 24, 0]
[5] [0, 1250, 480, 360, 270, 0]
[6] [0, 19440, 7500, 5760, 4860, 3840, 0]
[7] [0, 352947, 136080, 105000, 90720, 80640, 65625, 0]
[8] [0, 7340032, 2823576, 2177280, 1890000, 1720320, 1575000, 1306368, 0]
A368849,
A369016 and this sequence are alternative sum representation for
A001864 with different normalizations.
T(n, n - 1) =
A081133(n - 2) for n >= 2.
Sum_{k=0..n} T(n, k) =
A036276(n - 1) for n >= 1.
Sum_{k=0..n} (-1)^(k+1)*T(n, k) =
A368981(n) / 2 for n >= 0.
-
T := (n, k) -> binomial(n, k-1)*(k-1)^(k-1)*(n-k)*(n-k+1)^(n-k)/2:
seq(seq(T(n, k), k = 0..n), n=0..9);
-
A368982[n_, k_] := Binomial[n, k-1] If[k == 1, 1, (k-1)^(k-1)] (n-k) (n-k+1)^(n-k)/2; Table[A368982[n, k], {n, 0, 10}, {k, 0, n}] (* Paolo Xausa, Jan 28 2024 *)
-
def T(n, k): return binomial(n, k-1)*(k-1)^(k-1)*(n-k)*(n-k+1)^(n-k)//2
for n in range(0, 9): print([T(n, k) for k in range(n + 1)])
A369018
Triangle read by rows: T(n, k) = binomial(n, k - 1)*(k - 1)^(k - 1)*n*(n - k + 1)^(n - k).
Original entry on oeis.org
0, 0, 1, 0, 4, 4, 0, 27, 18, 36, 0, 256, 144, 192, 432, 0, 3125, 1600, 1800, 2700, 6400, 0, 46656, 22500, 23040, 29160, 46080, 112500, 0, 823543, 381024, 367500, 423360, 564480, 918750, 2286144, 0, 16777216, 7529536, 6967296, 7560000, 9175040, 12600000, 20901888, 52706752
Offset: 0
Triangle read by rows:
[0] [0]
[1] [0, 1]
[2] [0, 4, 4]
[3] [0, 27, 18, 36]
[4] [0, 256, 144, 192, 432]
[5] [0, 3125, 1600, 1800, 2700, 6400]
[6] [0, 46656, 22500, 23040, 29160, 46080, 112500]
[7] [0, 823543, 381024, 367500, 423360, 564480, 918750, 2286144]
-
T := (n, k) -> binomial(n, k - 1)*(k - 1)^(k - 1)*n*(n - k + 1)^(n - k):
seq(seq(T(n, k), k = 0..n), n=0..9);
-
A369018[n_, k_] := Binomial[n, k-1] If[k == 1, 1, (k-1)^(k-1)] n (n-k+1)^(n-k);
Table[A369018[n, k], {n, 0, 10}, {k, 0, n}] (* Paolo Xausa, Jan 27 2024 *)
-
def A369018(n, k):
return binomial(n, k - 1)*(k - 1)^(k - 1)*n*(n - k + 1)^(n - k)
Showing 1-5 of 5 results.