A368849
Triangle read by rows: T(n, k) = binomial(n, k - 1)*(k - 1)^(k - 1)*(n - k)*(n - k + 1)^(n - k).
Original entry on oeis.org
0, 0, 0, 0, 2, 0, 0, 18, 6, 0, 0, 192, 72, 48, 0, 0, 2500, 960, 720, 540, 0, 0, 38880, 15000, 11520, 9720, 7680, 0, 0, 705894, 272160, 210000, 181440, 161280, 131250, 0, 0, 14680064, 5647152, 4354560, 3780000, 3440640, 3150000, 2612736, 0
Offset: 0
Triangle starts:
[0] [0]
[1] [0, 0]
[2] [0, 2, 0]
[3] [0, 18, 6, 0]
[4] [0, 192, 72, 48, 0]
[5] [0, 2500, 960, 720, 540, 0]
[6] [0, 38880, 15000, 11520, 9720, 7680, 0]
[7] [0, 705894, 272160, 210000, 181440, 161280, 131250, 0]
[8] [0, 14680064, 5647152, 4354560, 3780000, 3440640, 3150000, 2612736, 0]
T(n, 1)/(n - 1) =
A000169(n) for n >= 2.
T(n, n - 1) = 2*
A081133(n) for n >= 1.
(Sum_{k=0..n} T(n, k)) / n =
A000435(n) for n >= 1.
(Sum_{k=0..n} T(n, k)) * n / 2 =
A262973(n) for n >= 1.
(Sum_{k=2..n} T(n, k)) / (2*n) =
A057500(n) for n >= 1.
T(n, 1)/(n - 1) + (Sum_{k=2..n} T(n, k)) / (2*n) =
A368951(n) for n >= 2.
Sum_{k=0..n} (-1)^(k-1) * T(n, k) =
A368981(n).
-
A368849[n_, k_] := Binomial[n, k-1] If[k == 1, 1, (k-1)^(k-1)] (n-k) (n-k+1)^(n-k);
Table[A368849[n, k], {n, 0, 10}, {k, 0, n}] (* Paolo Xausa, Jan 13 2024 *)
-
def T(n, k):
return binomial(n, k - 1)*(k - 1)^(k - 1)*(n - k)*(n - k + 1)^(n - k)
for n in range(0, 9): print([n], [T(n, k) for k in range(n + 1)])
A369016
Triangle read by rows: T(n, k) = binomial(n - 1, k - 1) * (k - 1)^(k - 1) * (n - k) * (n - k + 1)^(n - k - 1).
Original entry on oeis.org
0, 0, 0, 0, 1, 0, 0, 6, 2, 0, 0, 48, 18, 12, 0, 0, 500, 192, 144, 108, 0, 0, 6480, 2500, 1920, 1620, 1280, 0, 0, 100842, 38880, 30000, 25920, 23040, 18750, 0, 0, 1835008, 705894, 544320, 472500, 430080, 393750, 326592, 0
Offset: 0
Triangle starts:
[0] [0]
[1] [0, 0]
[2] [0, 1, 0]
[3] [0, 6, 2, 0]
[4] [0, 48, 18, 12, 0]
[5] [0, 500, 192, 144, 108, 0]
[6] [0, 6480, 2500, 1920, 1620, 1280, 0]
[7] [0, 100842, 38880, 30000, 25920, 23040, 18750, 0]
[8] [0, 1835008, 705894, 544320, 472500, 430080, 393750, 326592, 0]
A368849,
A368982 and this sequence are alternative sum representation for
A001864 with different normalizations.
T(n, k) =
A368849(n, k) / n for n >= 1.
T(n, n - 1) =
A055897(n - 1) for n >= 2.
Sum_{k=0..n} T(n, k) =
A000435(n) for n >= 1.
Sum_{k=0..n} (-1)^(k+1)*T(n, k) =
A368981(n) / n for n >= 1.
-
T := (n, k) -> binomial(n-1, k-1)*(k-1)^(k-1)*(n-k)*(n-k+1)^(n-k-1):
seq(seq(T(n, k), k = 0..n), n=0..9);
-
A369016[n_, k_] := Binomial[n-1, k-1] If[k == 1, 1, (k-1)^(k-1)] (n-k) (n-k+1)^(n-k-1); Table[A369016[n, k], {n, 0, 10}, {k, 0, n}] (* Paolo Xausa, Jan 28 2024 *)
-
def T(n, k): return binomial(n-1, k-1)*(k-1)^(k-1)*(n-k)*(n-k+1)^(n-k-1)
for n in range(0, 9): print([T(n, k) for k in range(n + 1)])
A368982
Triangle read by rows: T(n, k) = binomial(n, k - 1) * (k - 1)^(k - 1) * (n - k) * (n - k + 1)^(n - k) / 2.
Original entry on oeis.org
0, 0, 0, 0, 1, 0, 0, 9, 3, 0, 0, 96, 36, 24, 0, 0, 1250, 480, 360, 270, 0, 0, 19440, 7500, 5760, 4860, 3840, 0, 0, 352947, 136080, 105000, 90720, 80640, 65625, 0, 0, 7340032, 2823576, 2177280, 1890000, 1720320, 1575000, 1306368, 0
Offset: 0
Triangle starts:
[0] [0]
[1] [0, 0]
[2] [0, 1, 0]
[3] [0, 9, 3, 0]
[4] [0, 96, 36, 24, 0]
[5] [0, 1250, 480, 360, 270, 0]
[6] [0, 19440, 7500, 5760, 4860, 3840, 0]
[7] [0, 352947, 136080, 105000, 90720, 80640, 65625, 0]
[8] [0, 7340032, 2823576, 2177280, 1890000, 1720320, 1575000, 1306368, 0]
A368849,
A369016 and this sequence are alternative sum representation for
A001864 with different normalizations.
T(n, n - 1) =
A081133(n - 2) for n >= 2.
Sum_{k=0..n} T(n, k) =
A036276(n - 1) for n >= 1.
Sum_{k=0..n} (-1)^(k+1)*T(n, k) =
A368981(n) / 2 for n >= 0.
-
T := (n, k) -> binomial(n, k-1)*(k-1)^(k-1)*(n-k)*(n-k+1)^(n-k)/2:
seq(seq(T(n, k), k = 0..n), n=0..9);
-
A368982[n_, k_] := Binomial[n, k-1] If[k == 1, 1, (k-1)^(k-1)] (n-k) (n-k+1)^(n-k)/2; Table[A368982[n, k], {n, 0, 10}, {k, 0, n}] (* Paolo Xausa, Jan 28 2024 *)
-
def T(n, k): return binomial(n, k-1)*(k-1)^(k-1)*(n-k)*(n-k+1)^(n-k)//2
for n in range(0, 9): print([T(n, k) for k in range(n + 1)])
Showing 1-3 of 3 results.
Comments