A368862 Numerators of an infinite series that converges to the negative inverse of Backhouse's constant (A088751).
-1, -3, 1, 1, -1, 5, -19, -9, 41, -103, 17, 289, -169, 331, -689, -4991, 3999, 7833, -6509, 21827, -22165, -87637, 119441, -190981, -152513, 1482023, -425985, -1045091, 1071237, -14108791, 5845271, 39852203, -35832801, 54451699, 44061359, -435442725, 261309855, -22217917
Offset: 1
Keywords
Examples
a(1) = -1; a(2) = -3; a(3) = -det ToeplitzMatrix((3,2),(3,5)) = 1; a(4) = -det ToeplitzMatrix((3,2,1),(3,5,7)) = 1; a(5) = -det ToeplitzMatrix((3,2,1,0),(3,5,7,11)) = -1; a(6) = -det ToeplitzMatrix((3,2,1,0,0),(3,5,7,11,13)) = 5; a(7) = -det ToeplitzMatrix((3,2,1,0,0,0),(3,5,7,11,13,17)) = -19.
Links
- E. T. Whittaker and G. Robinson, The Calculus of Observations, London: Blackie & Son, Ltd. 1924, pp. 120-123.
Formula
a(1) = -1.
For n > 1, a(n) = -det ToeplitzMatrix((c(2),c(1),c(0),0,0,...,0),(c(2),c(3),c(4),...,c(n))), where c(0)=1 and c(n) is the n-th prime number.
Extensions
a(21)-a(38) from Stefano Spezia, Jan 09 2024
Comments