A368951 Number of connected labeled graphs with n edges and n vertices and with loops allowed.
1, 1, 2, 10, 79, 847, 11436, 185944, 3533720, 76826061, 1880107840, 51139278646, 1530376944768, 49965900317755, 1767387701671424, 67325805434672100, 2747849045156064256, 119626103584870552921, 5533218319763109888000, 270982462739224265922466
Offset: 0
Keywords
Examples
From _Gus Wiseman_, Feb 12 2024: (Start) The a(0) = 1 through a(3) = 10 loop-graphs: {} {11} {11,12} {11,12,13} {22,12} {11,12,23} {11,13,23} {22,12,13} {22,12,23} {22,13,23} {33,12,13} {33,12,23} {33,13,23} {12,13,23} (End)
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..200
- Eric Weisstein's World of Mathematics, Graph Loop.
Crossrefs
Programs
-
Maple
egf:= (L-> 1-L/2-log(1+L)/2-L^2/4)(LambertW(-x)): a:= n-> n!*coeff(series(egf, x, n+1), x, n): seq(a(n), n=0..25); # Alois P. Heinz, Jan 10 2024
-
PARI
seq(n)={my(t=-lambertw(-x + O(x*x^n))); Vec(serlaplace(-log(1-t)/2 + t/2 - t^2/4 + 1))}
Formula
E.g.f.: 1 - log(1-T(x))/2 + T(x)/2 - T(x)^2/4 where T(x) = -LambertW(-x) is the e.g.f. of A000169.
From Peter Luschny, Jan 10 2024: (Start)
a(n) = (exp(n)*Gamma(n + 1, n) - (n - 1)*n^(n - 1))/(2*n) for n > 0.
Comments