A368952 Irregular triangle T(n,k) read by rows: row n lists the larger number in each pair of triangular numbers (a, b) satisfying a - b = n.
1, 3, 6, 3, 10, 15, 6, 21, 6, 28, 10, 36, 45, 15, 10, 55, 10, 66, 21, 78, 15, 91, 28, 105, 15, 120, 36, 21, 15, 136, 153, 45, 171, 28, 21, 190, 55, 210, 21, 231, 66, 36, 21, 253, 28, 276, 78, 300, 45, 325, 91, 28, 351, 36, 378, 105, 55, 28, 406, 28, 435, 120, 465, 66, 45, 36
Offset: 1
Examples
For n=3 with 0 <= k <= 6, sqrt((2*k + 1)^2 - 8*3) has integer values for k=2, 3, so that the pairs of triangular numbers are (3, 0) and (6, 3), and row 3 of the triangle consists of 6 and 3. The first 20 rows of the irregular triangle: n| k: 1 2 3 4 ----------------------------- 1| 1 2| 3 3| 6 3 4| 10 5| 15 6 6| 21 6 7| 28 10 8| 36 9| 45 15 10 10| 55 10 11| 66 21 12| 78 15 13| 91 28 14| 105 15 15| 120 36 21 15 16| 136 17| 153 45 18| 171 28 21 19| 190 55 20| 210 21 ...
Programs
-
Mathematica
a000217[k_] := k (k+1)/2 triangle[n_] := Map[a000217, Select[Range[a000217[n], 0, -1], IntegerQ[Sqrt[(2#+1)^2 -8n]]&]] a368952[n_] := Flatten[Map[triangle, Range[n]]] a368952[30]
Comments