cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A368947 Row lengths of A368946: in the MIU formal system, number of (possibly not distinct) strings n steps distant from the MI string.

Original entry on oeis.org

1, 2, 3, 6, 16, 60, 356, 3227, 44310, 928650, 28577371, 1296940642
Offset: 0

Views

Author

Paolo Xausa, Jan 10 2024

Keywords

Comments

See A368946 for the description of the MIU formal system.

References

  • Douglas R. Hofstadter, Gödel, Escher, Bach: an Eternal Golden Braid, Basic Books, 1979, pp. 33-41.

Crossrefs

Programs

  • Mathematica
    MIUStepW3[s_] := Flatten[Map[{If[StringEndsQ[#, "1"], # <> "0", Nothing], # <> #, StringReplaceList[#, {"111" -> "0","00" -> ""}]}&, s]];
    With[{rowmax = 9}, Map[Length, NestList[MIUStepW3, {"1"}, rowmax]]]
  • Python
    from itertools import islice
    def occurrence_swaps(w, s, t):
        out, oi = [], w.find(s)
        while oi != -1:
            out.append(w[:oi] + t + w[oi+len(s):])
            oi = w.find(s, oi+1)
        return out
    def moves(w): # moves for word w in MIU system, encoded as 310
        nxt = []
        if w[-1] == '1': nxt.append(w + '0')        # Rule 1
        if w[0] == '3': nxt.append(w + w[1:])       # Rule 2
        nxt.extend(occurrence_swaps(w, '111', '0')) # Rule 3
        nxt.extend(occurrence_swaps(w, '00', ''))   # Rule 4
        return nxt
    def agen(): # generator of terms
        frontier = ['31']
        while len(frontier) > 0:
            yield len(frontier)
            reach1 = [m for p in frontier for m in moves(p)]
            frontier, reach1 = reach1, []
    print(list(islice(agen(), 10))) # Michael S. Branicky, Jan 14 2024

Formula

a(n) >= A368954(n).

Extensions

a(10)-a(11) from Michael S. Branicky, Jan 14 2024

A368953 Irregular triangle read by rows: row n lists (in lexicographical order and with duplicates removed) the strings of the MIU formal system at the n-th level of the tree generated by recursively applying the system rules, starting from the MI string.

Original entry on oeis.org

31, 310, 311, 31010, 3110, 31111, 301, 310, 310101010, 3110110, 311110, 311111111, 3010, 30101, 3011111, 3100, 31010, 31010101010101010, 3101111, 3110110110110, 3110111, 3111011, 3111101, 31111011110, 3111110, 3111111110, 31111111111111111
Offset: 0

Views

Author

Paolo Xausa, Jan 10 2024

Keywords

Comments

This is a variant of A368946 (see there for the description of the MIU system) where, within a row, duplicates are removed and encoded strings are ordered lexicographically.

Examples

			After recursively applying the rules three times, we get the following tree (cf. Hofstadter (1979), page 40, Figure 11).
.
                           MI
  0 ---------------------- 31
                         /    \
                        1      2 <--- Rule applied
                       /        \
                     MIU        MII
  1 ---------------- 310        311
                    /          /   \
                   2          1     2
                  /          /       \
              MIUIU       MIIU      MIIII
  2 --------- 31010       3110      31111
               /          /       / |   | \
              2          2       1  2   3  3
             /          /       /   |   |   \
        MIUIUIUIU   MIIUIIU  MIIIIU |  MUI  MIU
  3 --- 310101010   3110110  311110 |  301  310
                                MIIIIIIII
                                311111111
.
After ordering the encoded strings lexicographically within a tree level (and removing duplicates, if present), the triangle begins:
  [0] 31;
  [1] 310 311;
  [2] 31010 3110 31111;
  [3] 301 310 310101010 3110110 311110 311111111;
  ...
Please note that some strings may be present in different rows: within the first four rows, the string MIU (310) is present in rows 1 and 3.
		

References

  • Douglas R. Hofstadter, Gödel, Escher, Bach: an Eternal Golden Braid, Basic Books, 1979, pp. 33-41 and pp. 261-262.

Crossrefs

Cf. A331536, A368946, A368954 (row lengths), A369173 (all MIU strings).

Programs

  • Mathematica
    MIUStepL[s_] := Union[Flatten[Map[{If[StringEndsQ[#, "1"], # <> "0", Nothing], # <> StringDrop[#, 1], StringReplaceList[#, {"111" -> "0", "00" -> ""}]}&, s]]];
    With[{rowmax = 4}, Map[FromDigits, NestList[MIUStepL, {"31"}, rowmax], {2}]]
Showing 1-2 of 2 results.