cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A368963 Expansion of (1/x) * Series_Reversion( x * (1-x-x^2)^3 ).

Original entry on oeis.org

1, 3, 18, 130, 1044, 8949, 80201, 742365, 7042215, 68103156, 668913195, 6654654240, 66916523202, 679039933050, 6944796387690, 71512538784330, 740800257667236, 7714659988543299, 80719544259082000, 848155028673449400, 8945940728543188656
Offset: 0

Views

Author

Seiichi Manyama, Jan 10 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serreverse(x*(1-x-x^2)^3)/x)
    
  • PARI
    a(n, s=2, t=3, u=0) = sum(k=0, n\s, binomial(t*(n+1)+k-1, k)*binomial((t+u+1)*(n+1)-(s-1)*k-2, n-s*k))/(n+1);

Formula

a(n) = (1/(n+1)) * Sum_{k=0..floor(n/2)} binomial(3*n+k+2,k) * binomial(4*n-k+2,n-2*k).
G.f.: B(x)^3, where B(x) is the g.f. of A365182. - Seiichi Manyama, Sep 20 2024

A368972 Expansion of (1/x) * Series_Reversion( x * (1-x+x^3)^3 ).

Original entry on oeis.org

1, 3, 15, 88, 564, 3819, 26851, 194025, 1431498, 10735548, 81580008, 626697786, 4858272450, 37954323885, 298487957670, 2361025981335, 18770449480056, 149897172319290, 1201831832357041, 9670416882346848, 78062823843714528, 631988009034161246
Offset: 0

Views

Author

Seiichi Manyama, Jan 10 2024

Keywords

Comments

a(702) is negative.

Crossrefs

Cf. A368964.

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serreverse(x*(1-x+x^3)^3)/x)
    
  • PARI
    a(n, s=3, t=3, u=0) = sum(k=0, n\s, (-1)^k*binomial(t*(n+1)+k-1, k)*binomial((t+u+1)*(n+1)-(s-1)*k-2, n-s*k))/(n+1);

Formula

a(n) = (1/(n+1)) * Sum_{k=0..floor(n/3)} (-1)^k * binomial(3*n+k+2,k) * binomial(4*n-2*k+2,n-3*k).
Showing 1-2 of 2 results.