cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A368964 Expansion of (1/x) * Series_Reversion( x * (1-x-x^3)^3 ).

Original entry on oeis.org

1, 3, 15, 94, 660, 4959, 38995, 316875, 2639754, 22423292, 193484208, 1691190228, 14942632450, 133242614565, 1197520200870, 10836727044255, 98656011543816, 902936341411170, 8303218554134769, 76679352910367832, 710839322080978272, 6612557820697157410
Offset: 0

Views

Author

Seiichi Manyama, Jan 10 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serreverse(x*(1-x-x^3)^3)/x)
    
  • PARI
    a(n, s=3, t=3, u=0) = sum(k=0, n\s, binomial(t*(n+1)+k-1, k)*binomial((t+u+1)*(n+1)-(s-1)*k-2, n-s*k))/(n+1);

Formula

a(n) = (1/(n+1)) * Sum_{k=0..floor(n/3)} binomial(3*n+k+2,k) * binomial(4*n-2*k+2,n-3*k).

A368971 Expansion of (1/x) * Series_Reversion( x * (1-x+x^2)^3 ).

Original entry on oeis.org

1, 3, 12, 52, 228, 969, 3795, 12285, 19227, -162316, -2334219, -20233746, -146642814, -956899038, -5761740810, -32172133140, -164988072288, -752632536117, -2777949390584, -5070274066512, 41416739288496, 663038498204040, 6188361199762260, 47738255512890555
Offset: 0

Views

Author

Seiichi Manyama, Jan 10 2024

Keywords

Crossrefs

Cf. A368963.

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serreverse(x*(1-x+x^2)^3)/x)
    
  • PARI
    a(n, s=2, t=3, u=0) = sum(k=0, n\s, (-1)^k*binomial(t*(n+1)+k-1, k)*binomial((t+u+1)*(n+1)-(s-1)*k-2, n-s*k))/(n+1);

Formula

a(n) = (1/(n+1)) * Sum_{k=0..floor(n/2)} (-1)^k * binomial(3*n+k+2,k) * binomial(4*n-k+2,n-2*k).

A370620 Coefficient of x^n in the expansion of 1 / (1-x-x^2)^(3*n).

Original entry on oeis.org

1, 3, 27, 255, 2535, 25908, 269667, 2843214, 30264975, 324543495, 3500669172, 37940361660, 412830243735, 4507040972190, 49345845670470, 541602648192480, 5957253066586815, 65650003858745514, 724693081872783375, 8011727857439155500, 88692087094226151300
Offset: 0

Views

Author

Seiichi Manyama, May 01 2024

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_]:=SeriesCoefficient[(1-x-x^2)^(-3*n),{x,0,n}]; Array[a,21,0] (* Stefano Spezia, May 01 2024 *)
  • PARI
    a(n, s=2, t=3, u=0) = sum(k=0, n\s, binomial(t*n+k-1, k)*binomial((t-u+1)*n-(s-1)*k-1, n-s*k));

Formula

a(n) = Sum_{k=0..floor(n/2)} binomial(3*n+k-1,k) * binomial(4*n-k-1,n-2*k).
The g.f. exp( Sum_{k>=1} a(k) * x^k/k ) has integer coefficients and equals (1/x) * Series_Reversion( x * (1-x-x^2)^3 ). See A368963.

A376326 Expansion of (1/x) * Series_Reversion( x * (1-x-x^2)^4 ).

Original entry on oeis.org

1, 4, 30, 272, 2737, 29380, 329614, 3818540, 45329440, 548511612, 6740687924, 83898110660, 1055441468145, 13398494365088, 171422870731600, 2208161418665872, 28614197357895055, 372754395074051500, 4878709294080115494, 64123505084010848580, 846018700129069313495
Offset: 0

Views

Author

Seiichi Manyama, Sep 20 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serreverse(x*(1-x-x^2)^4)/x)
    
  • PARI
    a(n, s=2, t=4, u=0) = sum(k=0, n\s, binomial(t*(n+1)+k-1, k)*binomial((t+u+1)*(n+1)-(s-1)*k-2, n-s*k))/(n+1);

Formula

a(n) = (1/(n+1)) * Sum_{k=0..floor(n/2)} binomial(4*n+k+3,k) * binomial(5*n-k+3,n-2*k).
G.f.: B(x)^4, where B(x) is the g.f. of A365188.
Showing 1-4 of 4 results.