cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A368963 Expansion of (1/x) * Series_Reversion( x * (1-x-x^2)^3 ).

Original entry on oeis.org

1, 3, 18, 130, 1044, 8949, 80201, 742365, 7042215, 68103156, 668913195, 6654654240, 66916523202, 679039933050, 6944796387690, 71512538784330, 740800257667236, 7714659988543299, 80719544259082000, 848155028673449400, 8945940728543188656
Offset: 0

Views

Author

Seiichi Manyama, Jan 10 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serreverse(x*(1-x-x^2)^3)/x)
    
  • PARI
    a(n, s=2, t=3, u=0) = sum(k=0, n\s, binomial(t*(n+1)+k-1, k)*binomial((t+u+1)*(n+1)-(s-1)*k-2, n-s*k))/(n+1);

Formula

a(n) = (1/(n+1)) * Sum_{k=0..floor(n/2)} binomial(3*n+k+2,k) * binomial(4*n-k+2,n-2*k).
G.f.: B(x)^3, where B(x) is the g.f. of A365182. - Seiichi Manyama, Sep 20 2024

A381840 G.f. A(x) satisfies A(x) = 1 + x*A(x)^4 - x^2*A(x)^7.

Original entry on oeis.org

1, 1, 3, 11, 42, 153, 469, 690, -5967, -82708, -700876, -4989894, -32082336, -190742496, -1053280998, -5347579160, -24162468390, -88249158963, -157067396045, 1334548659436, 20996875910808, 194476989681546, 1491599102987040, 10232074769143770, 64440205192609155
Offset: 0

Views

Author

Seiichi Manyama, Mar 08 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\2, (-1)^k*binomial(3*n+k, k)*binomial(4*n-k, n-2*k))/(3*n+1);

Formula

a(n) = (1/(3*n+1)) * Sum_{k=0..floor(n/2)} (-1)^k * binomial(3*n+k,k) * binomial(4*n-k,n-2*k).
G.f.: ( (1/x) * Series_Reversion( x * (1-x+x^2)^3 ) )^(1/3).
Showing 1-2 of 2 results.