A368969
Expansion of (1/x) * Series_Reversion( x * (1-x+x^2)^2 ).
Original entry on oeis.org
1, 2, 5, 12, 22, 0, -284, -1938, -9367, -36938, -118105, -260130, 56637, 4890560, 35945616, 186674620, 782890326, 2632462236, 5987222046, -2241224328, -129137211280, -967479390360, -5145272296080, -22060975744080, -75535676951124, -172915138783080
Offset: 0
-
my(N=30, x='x+O('x^N)); Vec(serreverse(x*(1-x+x^2)^2)/x)
-
a(n, s=2, t=2, u=0) = sum(k=0, n\s, (-1)^k*binomial(t*(n+1)+k-1, k)*binomial((t+u+1)*(n+1)-(s-1)*k-2, n-s*k))/(n+1);
A368973
Expansion of (1/x) * Series_Reversion( x * (1-x) * (1-x+x^2)^2 ).
Original entry on oeis.org
1, 3, 13, 65, 351, 1989, 11650, 69903, 427225, 2649229, 16622079, 105310673, 672687322, 4327037010, 28002409452, 182179075689, 1190778886791, 7815755146095, 51491064226095, 340374137775879, 2256891800364421, 15006481967365535, 100037043223408890
Offset: 0
-
my(N=30, x='x+O('x^N)); Vec(serreverse(x*(1-x)*(1-x+x^2)^2)/x)
-
a(n, s=2, t=2, u=1) = sum(k=0, n\s, (-1)^k*binomial(t*(n+1)+k-1, k)*binomial((t+u+1)*(n+1)-(s-1)*k-2, n-s*k))/(n+1);
A381828
Expansion of ( (1/x) * Series_Reversion( x * ((1-x) * (1-x+x^2))^2 ) )^(1/2).
Original entry on oeis.org
1, 2, 10, 65, 480, 3824, 32039, 278256, 2482578, 22617830, 209540672, 1968031520, 18696064179, 179332892186, 1734451272240, 16895744042472, 165621305486976, 1632518433458400, 16170959983623314, 160888256475481560, 1607061512154585046, 16110030923830784248
Offset: 0
A369076
Expansion of (1/x) * Series_Reversion( x * (1+x^2/(1-x))^2 ).
Original entry on oeis.org
1, 0, -2, -2, 9, 24, -37, -240, -2, 2126, 2919, -16052, -50663, 86940, 631995, 19094, -6491463, -9595434, 54443985, 181532910, -317331187, -2426618056, -133151895, 26332109928, 40544827703, -230619508548, -793966990358, 1384746844832, 10960715925621, 881359815524
Offset: 0
-
my(N=40, x='x+O('x^N)); Vec(serreverse(x*(1+x^2/(1-x))^2)/x)
-
a(n, s=2, t=2, u=-2) = sum(k=0, n\s, (-1)^k*binomial(t*(n+1)+k-1, k)*binomial((t+u+1)*(n+1)-(s-1)*k-2, n-s*k))/(n+1);
A372464
Coefficient of x^n in the expansion of 1 / ( (1-x) * (1-x+x^2) )^(2*n).
Original entry on oeis.org
1, 4, 32, 286, 2688, 26004, 256334, 2560352, 25824768, 262447684, 2683152032, 27565067600, 284330359950, 2942808943572, 30546407611136, 317867390671536, 3314979452815360, 34637849797078380, 362544825234198020, 3800439733237986800, 39893311092729794688
Offset: 0
-
a(n, s=2, t=2, u=2) = sum(k=0, n\s, (-1)^k*binomial(t*n+k-1, k)*binomial((t+u+1)*n-(s-1)*k-1, n-s*k));
Showing 1-5 of 5 results.