cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A369012 Expansion of (1/x) * Series_Reversion( x * (1-x/(1-x))^3 ).

Original entry on oeis.org

1, 3, 18, 133, 1095, 9636, 88718, 843993, 8230671, 81841987, 826641816, 8457710604, 87472494564, 912995025912, 9604763388534, 101736967518497, 1084125909550959, 11614159795566489, 125011746270524690, 1351312626871871661, 14662950224977228047
Offset: 0

Views

Author

Seiichi Manyama, Jan 11 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serreverse(x*(1-x/(1-x))^3)/x)
    
  • PARI
    a(n, s=1, t=3, u=-3) = sum(k=0, n\s, binomial(t*(n+1)+k-1, k)*binomial((t+u+1)*(n+1)-(s-1)*k-2, n-s*k))/(n+1);

Formula

a(n) = (1/(n+1)) * Sum_{k=0..n} binomial(3*n+k+2,k) * binomial(n-1,n-k).
D-finite with recurrence 96*(3*n+2)*(3*n+1)*(n+1)*a(n) +4*(-4121*n^3 +1922*n^2 -1273*n+124)*a(n-1) +4*(20588*n^3 -76648*n^2 +98677*n -43586)*a(n-2) +(-90073*n^3 +671565*n^2 -1665278*n +1375320)*a(n-3) +210*(n-4)*(3*n-7) *(3*n-8)*a(n-4)=0. - R. J. Mathar, Jan 25 2024
From Seiichi Manyama, Dec 02 2024: (Start)
G.f.: exp( Sum_{k>=1} A378612(k) * x^k/k ).
a(n) = (1/(n+1)) * [x^n] 1/(1 - x/(1 - x))^(3*(n+1)).
G.f.: B(x)^3 where B(x) is the g.f. of A243659.
a(n) = 3 * Sum_{k=0..n} 2^k * (-1)^(n-k) * binomial(n,k) * binomial(3*n+k+3,n)/(3*n+k+3). (End)

A369014 Expansion of (1/x) * Series_Reversion( x * (1-x^3/(1-x))^3 ).

Original entry on oeis.org

1, 0, 0, 3, 3, 3, 36, 78, 129, 685, 2043, 4554, 17233, 57279, 153045, 509848, 1724739, 5117643, 16445555, 55165536, 173225715, 555899673, 1847495415, 5971507824, 19333284247, 63975307425, 209807070669, 685973054145, 2269660792842, 7501194321663, 24725092907853
Offset: 0

Views

Author

Seiichi Manyama, Jan 11 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=40, x='x+O('x^N)); Vec(serreverse(x*(1-x^3/(1-x))^3)/x)
    
  • PARI
    a(n, s=3, t=3, u=-3) = sum(k=0, n\s, binomial(t*(n+1)+k-1, k)*binomial((t+u+1)*(n+1)-(s-1)*k-2, n-s*k))/(n+1);

Formula

a(n) = (1/(n+1)) * Sum_{k=0..floor(n/3)} binomial(3*n+k+2,k) * binomial(n-2*k-1,n-3*k).

A370623 Coefficient of x^n in the expansion of ( (1-x) / (1-x-x^2) )^(3*n).

Original entry on oeis.org

1, 0, 6, 9, 90, 255, 1671, 6258, 34674, 148455, 765141, 3499551, 17487531, 82704921, 408192420, 1964826174, 9657348546, 46944246777, 230604062127, 1127574041325, 5543828629305, 27211172907207, 133970970691311, 659351846223252, 3251029812112995
Offset: 0

Views

Author

Seiichi Manyama, May 01 2024

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_]:=SeriesCoefficient[((1-x)/(1-x-x^2))^(3n),{x,0,n}]; Array[a,25,0] (* Stefano Spezia, May 01 2024 *)
  • PARI
    a(n, s=2, t=3, u=3) = sum(k=0, n\s, binomial(t*n+k-1, k)*binomial((t-u+1)*n-(s-1)*k-1, n-s*k));

Formula

a(n) = Sum_{k=0..floor(n/2)} binomial(3*n+k-1,k) * binomial(n-k-1,n-2*k).
The g.f. exp( Sum_{k>=1} a(k) * x^k/k ) has integer coefficients and equals (1/x) * Series_Reversion( x * (1-x-x^2)^3 / (1-x)^3 ). See A369013.

A369078 Expansion of (1/x) * Series_Reversion( x * (1+x^2/(1-x))^3 ).

Original entry on oeis.org

1, 0, -3, -3, 21, 54, -157, -828, 816, 11684, 5352, -151407, -288759, 1737498, 6671607, -15789371, -122051205, 58021488, 1935857500, 1977087345, -26913144267, -70826569596, 314853424458, 1586212109946, -2594198888498, -29124507344868, -2575010176581
Offset: 0

Views

Author

Seiichi Manyama, Jan 12 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serreverse(x*(1+x^2/(1-x))^3)/x)
    
  • PARI
    a(n, s=2, t=3, u=-3) = sum(k=0, n\s, (-1)^k*binomial(t*(n+1)+k-1, k)*binomial((t+u+1)*(n+1)-(s-1)*k-2, n-s*k))/(n+1);

Formula

a(n) = (1/(n+1)) * Sum_{k=0..floor(n/2)} (-1)^k * binomial(3*n+k+2,k) * binomial(n-k-1,n-2*k).
Showing 1-4 of 4 results.