cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A369025 Triangle read by rows: T(n, k) = floor(binomial(n, k - 1) * (k - 1)^(k - 1) * k *(n - k + 1)^(n - k) / 2).

Original entry on oeis.org

0, 0, 0, 0, 1, 2, 0, 4, 6, 18, 0, 32, 36, 72, 216, 0, 312, 320, 540, 1080, 3200, 0, 3888, 3750, 5760, 9720, 19200, 56250, 0, 58824, 54432, 78750, 120960, 201600, 393750, 1143072, 0, 1048576, 941192, 1306368, 1890000, 2867200, 4725000, 9144576, 26353376
Offset: 0

Views

Author

Peter Luschny, Jan 12 2024

Keywords

Examples

			Triangle starts:
  [0] [0]
  [1] [0,     0]
  [2] [0,     1,     2]
  [3] [0,     4,     6,    18]
  [4] [0,    32,    36,    72,    216]
  [5] [0,   312,   320,   540,   1080,   3200]
  [6] [0,  3888,  3750,  5760,   9720,  19200,  56250]
  [7] [0, 58824, 54432, 78750, 120960, 201600, 393750, 1143072]
		

Crossrefs

Cf. A369026 (column 1), A369027 (main diagonal).

Programs

  • Mathematica
    A369025[n_, k_] := Floor[Binomial[n, k-1] If[k == 1, 1, (k-1)^(k-1)] k (n-k+1)^(n-k) / 2];
    Table[A369025[n, k], {n, 0, 10}, {k, 0, n}] (* Paolo Xausa, Jan 12 2024 *)
  • SageMath
    def A369025(n, k):
        return binomial(n, k-1)*(k-1)^(k-1)*k*(n-k+1)^(n-k)//2
    for n in range(9): print([A369025(n, k) for k in range(n+1)])

A369026 a(n) = floor(n^(n - 1) / 2) for n > 0 and otherwise 0.

Original entry on oeis.org

0, 0, 1, 4, 32, 312, 3888, 58824, 1048576, 21523360, 500000000, 12968712300, 371504185344, 11649042561240, 396857386627072, 14596463012695312, 576460752303423488, 24330595937833434240, 1092955779869348265984
Offset: 0

Views

Author

Peter Luschny, Jan 12 2024

Keywords

Crossrefs

Programs

  • Mathematica
    A369026[n_] := If[n > 0, Floor[n^(n-1) / 2], 0];
    Array[A369026, 30, 0] (* Paolo Xausa, Jan 12 2024 *)
  • SageMath
    def A369026(n): return n^(n - 1) // 2 if n > 0 else 0
    print([A369026(n) for n in range(22)])

A369072 Triangle read by rows: T(n, k) = floor(binomial(n, k - 1) * (k - 1)^(k - 1) * n * (n - k + 1)^(n - k) / 2).

Original entry on oeis.org

0, 0, 0, 0, 2, 2, 0, 13, 9, 18, 0, 128, 72, 96, 216, 0, 1562, 800, 900, 1350, 3200, 0, 23328, 11250, 11520, 14580, 23040, 56250, 0, 411771, 190512, 183750, 211680, 282240, 459375, 1143072, 0, 8388608, 3764768, 3483648, 3780000, 4587520, 6300000, 10450944, 26353376
Offset: 0

Views

Author

Peter Luschny, Jan 12 2024

Keywords

Examples

			Triangle starts:
[0] [0]
[1] [0,      0]
[2] [0,      2,      2]
[3] [0,     13,      9,     18]
[4] [0,    128,     72,     96,    216]
[5] [0,   1562,    800,    900,   1350,   3200]
[6] [0,  23328,  11250,  11520,  14580,  23040,  56250]
[7] [0, 411771, 190512, 183750, 211680, 282240, 459375, 1143072]
		

Crossrefs

Cf. A057065 (column 1), A369027 (main diagonal).

Programs

  • Mathematica
    A369072[n_, k_] := Floor[Binomial[n, k-1] If[k == 1, 1, (k-1)^(k-1)] n (n-k+1)^(n-k) / 2];
    Table[A369072[n, k], {n, 0, 10}, {k, 0, n}] (* Paolo Xausa, Jan 13 2024 *)
  • SageMath
    def A369072(n, k):
        return binomial(n, k-1)*(k-1)^(k-1)*n*(n-k+1)^(n-k)//2
    for n in range(9): print([A369072(n, k) for k in range(n+1)])
Showing 1-3 of 3 results.