A369056 Numbers k of the form 4m+3 for which there is no representation as a sum (p*q + p*r + q*r) with three odd primes p <= q <= r.
3, 7, 11, 15, 19, 23, 31, 35, 43, 47, 59, 63, 67, 79, 83, 99, 107, 115, 127, 139, 143, 159, 163, 171, 175, 179, 207, 219, 223, 227, 235, 243, 259, 279, 283, 295, 303, 307, 319, 323, 339, 347, 367, 379, 387, 399, 403, 415, 427, 443, 463, 499, 515, 523, 531, 547, 559, 571, 579, 595, 603, 619, 639, 643, 655, 659, 675
Offset: 1
Keywords
Links
- Antti Karttunen, Table of n, a(n) for n = 1..20000
Crossrefs
Programs
-
Maple
N:= 1000: # for terms <= N S:= {seq(i,i=3..N,4)}: P:= select(isprime, [seq(i,i=3..N/3,2)]): for i from 1 to nops(P) do p:= P[i]; for j from i to nops(P) do q:= P[j]; if 2*p*q + q^2 > N then break fi; for k from j to nops(P) do r:= P[k]; v:= p*q + p*r + q*r; if v > N then break fi; S:= S minus {v}; od od od: sort(convert(S,list)); # Robert Israel, Apr 17 2024
-
PARI
isA369056(n) = ((3==(n%4)) && !A369054(n)); \\ Needs also program from A369054.
Comments