cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A369060 LCM-transform of Sycamore's D(3) variant of Doudna sequence (A356867).

Original entry on oeis.org

1, 2, 3, 5, 2, 1, 1, 2, 3, 7, 1, 1, 5, 1, 1, 1, 2, 1, 1, 1, 1, 5, 1, 1, 1, 2, 3, 11, 1, 1, 1, 1, 1, 1, 1, 1, 7, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 7, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 2, 3, 13, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Antti Karttunen, Jan 13 2024

Keywords

Comments

See discussion at A368900.

Crossrefs

Programs

  • PARI
    up_to = 3^9; \\ Checked up to (3^12)
    A356867list(up_to) = { my(v=vector(up_to),met=Map(),h=0,ak); for(i=1,#v,if(1==sumdigits(i,3), v[i] = i; h = i, ak = v[i-h]; forprime(p=2,,if(3!=p && !mapisdefined(met,p*ak), v[i] = p*ak; break))); mapput(met,v[i],i)); (v); };
    v356867 = A356867list(up_to);
    A356867(n) = v356867[n];
    LCMtransform(v) = { my(len = length(v), b = vector(len), g = vector(len)); b[1] = g[1] = 1; for(n=2,len, g[n] = lcm(g[n-1],v[n]); b[n] = g[n]/g[n-1]); (b); };
    v369060 = LCMtransform(v356867);
    A369060(n) = v369060[n];
    A014963(n) = { ispower(n, , &n); if(isprime(n), n, 1); };

Formula

a(n) = lcm {1..A356867(n)} / lcm {1..A356867(n-1)}.
a(n) = A014963(A356867(n)). [This holds because A356867 satisfies the property S explained in A368900]