cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A369087 Number of partitions of the square of the n-th triangular number into cubes.

Original entry on oeis.org

1, 1, 2, 7, 39, 289, 2514, 24625, 262768, 2998410, 36104634, 454307830, 5930683832, 79871973688, 1104858227039, 15642564963293, 226021630964469, 3325082850102429, 49705611691011214, 753760884548732440, 11578963116012317128, 179963257865062829685, 2826949471456067702388, 44840817231090333901577
Offset: 0

Views

Author

Paul D. Hanna, Jan 23 2024

Keywords

Comments

The sum of the first n cubes equals the square of the n-th triangular number: (1^3 + 2^3 + 3^3 + ... + n^3) = (1 + 2 + 3 + ... + n)^2 = (n*(n+1)/2)^2.

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0 or i=1, 1,
          b(n, i-1) +`if`(i^3>n, 0, b(n-i^3, i)))
        end:
    a:= n-> (t-> b(t, iroot(t, 3)))((n*(n+1)/2)^2):
    seq(a(n), n=0..23);  # Alois P. Heinz, Jan 24 2024
  • Mathematica
    Table[SeriesCoefficient[Product[1/(1 - x^(k^3)), {k, 1, (n*(n + 1)/2)^(2/3) + 1}], {x, 0, (n*(n + 1)/2)^2}], {n, 0, 20}] (* Vaclav Kotesovec, Jan 24 2024 *)
  • PARI
    {a(n) = my(M=(n*(n+1)/2)^2); polcoeff(1/prod(k=1, ceil(M^(1/3)), 1-x^(k^3)+x*O(x^M)), M)}
    for(n=0,30, print1(a(n),", "))

Formula

a(n) equals the coefficient of x^A000537(n) in Product_{k>=1} 1/(1 - x^(k^3)) for n >= 0, where A000537(n) = (n*(n+1)/2)^2.
a(n) = A003108(A000537(n)) for n >= 0.
Limit a(n)^(1/n) = exp( (Gamma(1/3) * Zeta(4/3))^(3/4) * (2/3)^(3/2) ) = 19.6784468967446... - see formula by Vaclav Kotesovec in A003108.
a(n) ~ (Gamma(1/3)*zeta(4/3))^(3/4) * exp(sqrt(2) * 3^(-3/2) * (Gamma(1/3)*zeta(4/3))^(3/4) * (2*n+1)) / (3 * sqrt(2) * Pi^2 * n^5). - Vaclav Kotesovec, Jan 25 2024