A369140 Number of labeled loop-graphs covering {1..n} such that it is possible to choose a different vertex from each edge (choosable).
1, 1, 4, 23, 193, 2133, 29410, 486602, 9395315, 207341153, 5147194204, 141939786588, 4304047703755, 142317774817901, 5095781837539766, 196403997108015332, 8106948166404074281, 356781439557643998591, 16675999433772328981216, 824952192369049982670686
Offset: 0
Keywords
Examples
The a(0) = 1 through a(3) = 23 loop-graphs (loops shown as singletons): {} {{1}} {{1,2}} {{1},{2,3}} {{1},{2}} {{2},{1,3}} {{1},{1,2}} {{3},{1,2}} {{2},{1,2}} {{1,2},{1,3}} {{1,2},{2,3}} {{1},{2},{3}} {{1,3},{2,3}} {{1},{2},{1,3}} {{1},{2},{2,3}} {{1},{3},{1,2}} {{1},{3},{2,3}} {{2},{3},{1,2}} {{2},{3},{1,3}} {{1},{1,2},{1,3}} {{1},{1,2},{2,3}} {{1},{1,3},{2,3}} {{2},{1,2},{1,3}} {{2},{1,2},{2,3}} {{2},{1,3},{2,3}} {{3},{1,2},{1,3}} {{3},{1,2},{2,3}} {{3},{1,3},{2,3}} {{1,2},{1,3},{2,3}}
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..200
Crossrefs
Programs
-
Mathematica
Table[Length[Select[Subsets[Subsets[Range[n], {1,2}]],Union@@#==Range[n]&&Length[Select[Tuples[#], UnsameQ@@#&]]!=0&]],{n,0,5}]
-
PARI
seq(n)={my(t=-lambertw(-x + O(x*x^n))); Vec(serlaplace(exp(-x + 3*t/2 - 3*t^2/4)/sqrt(1-t) ))} \\ Andrew Howroyd, Feb 02 2024
Formula
Inverse binomial transform of A368927.
Exponential transform of A369197.
E.g.f.: exp(-x)*exp(3*T(x)/2 - 3*T(x)^2/4)/sqrt(1-T(x)), where T(x) is the e.g.f. of A000169. - Andrew Howroyd, Feb 02 2024
Extensions
a(6) onwards from Andrew Howroyd, Feb 02 2024
Comments