A369142 Number of labeled loop-graphs covering {1..n} such that it is not possible to choose a different vertex from each edge (non-choosable).
0, 0, 1, 22, 616, 26084, 1885323, 253923163, 66619551326, 34575180977552, 35680008747431929, 73392583275070667841, 301348381377662031986734, 2471956814761854578316988092, 40530184362443276558060719358471, 1328619783326799871747200601484790193
Offset: 0
Keywords
Examples
The a(0) = 0 through a(3) = 22 loop-graphs (loops shown as singletons): . . {{1},{2},{1,2}} {{1},{2},{3},{1,2}} {{1},{2},{3},{1,3}} {{1},{2},{3},{2,3}} {{1},{2},{1,2},{1,3}} {{1},{2},{1,2},{2,3}} {{1},{2},{1,3},{2,3}} {{1},{3},{1,2},{1,3}} {{1},{3},{1,2},{2,3}} {{1},{3},{1,3},{2,3}} {{2},{3},{1,2},{1,3}} {{2},{3},{1,2},{2,3}} {{2},{3},{1,3},{2,3}} {{1},{1,2},{1,3},{2,3}} {{2},{1,2},{1,3},{2,3}} {{3},{1,2},{1,3},{2,3}} {{1},{2},{3},{1,2},{1,3}} {{1},{2},{3},{1,2},{2,3}} {{1},{2},{3},{1,3},{2,3}} {{1},{2},{1,2},{1,3},{2,3}} {{1},{3},{1,2},{1,3},{2,3}} {{2},{3},{1,2},{1,3},{2,3}} {{1},{2},{3},{1,2},{1,3},{2,3}}
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..50
Crossrefs
This is the covering case of A369141.
Programs
-
Mathematica
Table[Length[Select[Subsets[Subsets[Range[n],{1,2}]],Union@@#==Range[n]&&Length[Select[Tuples[#],UnsameQ@@#&]]==0&]],{n,0,5}]
Formula
Inverse binomial transform of A369141.
Extensions
a(6) onwards from Andrew Howroyd, Feb 02 2024
Comments