A369145 Number of unlabeled loop-graphs with up to n vertices such that it is possible to choose a different vertex from each edge (choosable).
1, 2, 5, 12, 30, 73, 185, 467, 1207, 3147, 8329, 22245, 60071, 163462, 448277, 1236913, 3432327, 9569352, 26792706, 75288346, 212249873, 600069431, 1700826842, 4831722294, 13754016792, 39224295915, 112048279650, 320563736148, 918388655873, 2634460759783, 7566000947867
Offset: 0
Keywords
Examples
The a(0) = 1 through a(3) = 12 loop-graphs (loops shown as singletons): {} {} {} {} {{1}} {{1}} {{1}} {{1,2}} {{1,2}} {{1},{2}} {{1},{2}} {{1},{1,2}} {{1},{1,2}} {{1},{2,3}} {{1,2},{1,3}} {{1},{2},{3}} {{1},{2},{1,3}} {{1},{1,2},{1,3}} {{1},{1,2},{2,3}} {{1,2},{1,3},{2,3}}
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..500
Crossrefs
The covering case is A369200.
Programs
-
Mathematica
brute[m_]:=First[Sort[Table[Sort[Sort /@ (m/.Rule@@@Table[{(Union@@m)[[i]],p[[i]]}, {i,Length[p]}])], {p,Permutations[Range[Length[Union@@m]]]}]]]; Table[Length[Union[brute /@ Select[Subsets[Subsets[Range[n],{1,2}]], Length[Select[Tuples[#], UnsameQ@@#&]]!=0&]]],{n,0,4}]
Formula
Partial sums of A369200.
Euler transform of A369289. - Andrew Howroyd, Feb 02 2024
Extensions
a(7) onwards from Andrew Howroyd, Feb 02 2024
Comments