A369146 Number of unlabeled loop-graphs with up to n vertices such that it is not possible to choose a different vertex from each edge (non-choosable).
0, 0, 1, 8, 60, 471, 4911, 78797, 2207405, 113740613, 10926218807, 1956363413115, 652335084532025, 405402273420833338, 470568642161119515627, 1023063423471189429817807, 4178849203082023236054797465, 32168008290073542372004072630072, 468053896898117580623237189882068990
Offset: 0
Keywords
Examples
The a(0) = 0 through a(3) = 8 loop-graphs (loops shown as singletons): . . {{1},{2},{1,2}} {{1},{2},{1,2}} {{1},{2},{3},{1,2}} {{1},{2},{1,2},{1,3}} {{1},{2},{1,3},{2,3}} {{1},{1,2},{1,3},{2,3}} {{1},{2},{3},{1,2},{1,3}} {{1},{2},{1,2},{1,3},{2,3}} {{1},{2},{3},{1,2},{1,3},{2,3}}
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..50
Crossrefs
The covering case is A369147.
Programs
-
Mathematica
brute[m_]:=First[Sort[Table[Sort[Sort /@ (m/.Rule@@@Table[{(Union@@m)[[i]],p[[i]]}, {i,Length[p]}])], {p,Permutations[Range[Length[Union@@m]]]}]]]; Table[Length[Union[brute /@ Select[Subsets[Subsets[Range[n],{1,2}]], Select[Tuples[#],UnsameQ@@#&]=={}&]]],{n,0,4}]
Formula
Partial sums of A369147.
Extensions
a(6) onwards from Andrew Howroyd, Feb 02 2024