cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A369153 Numbers k such that gcd(2*k^7+1, 3*k^3+2) > 1.

Original entry on oeis.org

435, 1598, 2761, 3924, 5087, 6250, 7413, 8576, 9739, 10902, 12065, 13228, 14391, 15554, 16717, 17880, 19043, 20206, 21369, 22532, 23695, 24858, 26021, 27184, 28347, 29510, 30673, 31836, 32999, 34162, 35325, 36488, 37651, 38814, 39977, 41140, 42303, 43466
Offset: 0

Views

Author

Philippe Deléham, Jan 15 2024

Keywords

Comments

This GCD is 1163 if k == 435 (mod 1163), or 1 otherwise.

Examples

			a(0) = 435, 2*435^7+1 = 5894606169966093751 and 3*435^3+2 = 246938627, gcd(5894606169966093751, 246938627) = 1163.
		

Programs

Formula

a(n) = 435 + 1163*n.
a(n) = 2*a(n-1) - a(n-2).
G.f.: (435 + 728*x)/(1 - x)^2.