A369195 Irregular triangle read by rows where T(n,k) is the number of labeled connected loop-graphs covering n vertices with k edges.
1, 0, 1, 0, 1, 2, 1, 0, 0, 3, 10, 12, 6, 1, 0, 0, 0, 16, 79, 162, 179, 116, 45, 10, 1, 0, 0, 0, 0, 125, 847, 2565, 4615, 5540, 4720, 2948, 1360, 455, 105, 15, 1, 0, 0, 0, 0, 0, 1296, 11436, 47100, 121185, 220075, 301818, 325578, 282835, 200115, 115560, 54168, 20343, 5985, 1330, 210, 21, 1
Offset: 0
Examples
Triangle begins: 1 0 1 0 1 2 1 0 0 3 10 12 6 1 0 0 0 16 79 162 179 116 45 10 1 Row n = 3 counts the following loop-graphs (loops shown as singletons): . . {12,13} {1,12,13} {1,2,12,13} {1,2,3,12,13} {1,2,3,12,13,23} {12,23} {1,12,23} {1,2,12,23} {1,2,3,12,23} {13,23} {1,13,23} {1,2,13,23} {1,2,3,13,23} {2,12,13} {1,3,12,13} {1,2,12,13,23} {2,12,23} {1,3,12,23} {1,3,12,13,23} {2,13,23} {1,3,13,23} {2,3,12,13,23} {3,12,13} {1,12,13,23} {3,12,23} {2,3,12,13} {3,13,23} {2,3,12,23} {12,13,23} {2,3,13,23} {2,12,13,23} {3,12,13,23}
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..1560 (rows 0..20)
Crossrefs
Programs
-
Mathematica
csm[s_]:=With[{c=Select[Subsets[Range[Length[s]], {2}],Length[Intersection@@s[[#]]]>0&]},If[c=={},s, csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]]; Table[Length[Select[Subsets[Subsets[Range[n],{1,2}],{k}], Length[Union@@#]==n&&Length[csm[#]]<=1&]], {n,0,5},{k,0,Binomial[n+1,2]}]
-
PARI
T(n)={[Vecrev(p) | p<-Vec(serlaplace(1 - x + log(sum(j=0, n, (1 + y)^binomial(j+1, 2)*x^j/j!, O(x*x^n))))) ]} { my(A=T(6)); for(i=1, #A, print(A[i])) } \\ Andrew Howroyd, Feb 02 2024
Formula
E.g.f.: 1 - x + log(Sum_{j >= 0} (1 + y)^binomial(j+1, 2)*x^j/j!). - Andrew Howroyd, Feb 02 2024
Comments