A369202 Number of unlabeled simple graphs covering n vertices such that it is not possible to choose a different vertex from each edge (non-choosable).
0, 0, 0, 0, 2, 13, 95, 826, 11137, 261899, 11729360, 1006989636, 164072166301, 50336940172142, 29003653625802754, 31397431814146891910, 63969589218557753075156, 245871863137828405124380563, 1787331789281458167615190373076, 24636021675399858912682459601585276
Offset: 0
Keywords
Examples
Representatives of the a(4) = 2 and a(5) = 13 simple graphs: {12}{13}{14}{23}{24} {12}{13}{14}{15}{23}{24} {12}{13}{14}{23}{24}{34} {12}{13}{14}{15}{23}{45} {12}{13}{14}{23}{24}{35} {12}{13}{14}{23}{25}{45} {12}{13}{14}{25}{35}{45} {12}{13}{14}{15}{23}{24}{25} {12}{13}{14}{15}{23}{24}{34} {12}{13}{14}{15}{23}{24}{35} {12}{13}{14}{23}{24}{35}{45} {12}{13}{14}{15}{23}{24}{25}{34} {12}{13}{14}{15}{23}{24}{35}{45} {12}{13}{14}{15}{23}{24}{25}{34}{35} {12}{13}{14}{15}{23}{24}{25}{34}{35}{45}
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..50
Programs
-
Mathematica
brute[m_]:=First[Sort[Table[Sort[Sort /@ (m/.Rule@@@Table[{(Union@@m)[[i]],p[[i]]},{i,Length[p]}])], {p,Permutations[Range[Length[Union@@m]]]}]]]; Table[Length[Union[brute /@ Select[Subsets[Subsets[Range[n],{2}]],Union@@#==Range[n] && Length[Select[Tuples[#],UnsameQ@@#&]]==0&]]],{n,0,5}]
Comments