cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A369262 Expansion of (1/x) * Series_Reversion( x * (1-x) / (1+x^2)^3 ).

Original entry on oeis.org

1, 1, 5, 17, 80, 363, 1792, 8969, 46319, 242994, 1296046, 6996163, 38175142, 210162728, 1166020560, 6512854409, 36593709385, 206686641555, 1172856064443, 6683348391034, 38228129813288, 219411037878578, 1263245957786120, 7293833100110787, 42224142505632305
Offset: 0

Views

Author

Seiichi Manyama, Jan 18 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serreverse(x*(1-x)/(1+x^2)^3)/x)
    
  • PARI
    a(n, s=2, t=3, u=1) = sum(k=0, n\s, binomial(t*(n+1), k)*binomial((u+1)*(n+1)-s*k-2, n-s*k))/(n+1);

Formula

a(n) = (1/(n+1)) * Sum_{k=0..floor(n/2)} binomial(3*n+3,k) * binomial(2*n-2*k,n-2*k).
a(n) = (1/(n+1)) * [x^n] ( 1/(1-x) * (1+x^2)^3 )^(n+1). - Seiichi Manyama, Feb 14 2024

A370243 Coefficient of x^n in the expansion of ( 1/(1-x) * (1+x^2)^2 )^n.

Original entry on oeis.org

1, 1, 7, 28, 143, 701, 3580, 18376, 95471, 499231, 2626607, 13883904, 73681316, 392323868, 2094932728, 11214085328, 60157698287, 323325959395, 1740682221829, 9385343934124, 50671846382743, 273913020523933, 1482311190765896, 8029798017622048, 43538300361416708
Offset: 0

Views

Author

Seiichi Manyama, Feb 13 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n, s=2, t=2, u=1) = sum(k=0, n\s, binomial(t*n, k)*binomial((u+1)*n-s*k-1, n-s*k));

Formula

a(n) = Sum_{k=0..floor(n/2)} binomial(2*n,k) * binomial(2*n-2*k-1,n-2*k).
The g.f. exp( Sum_{k>=1} a(k) * x^k/k ) has integer coefficients and equals (1/x) * Series_Reversion( x * (1-x) / (1+x^2)^2 ). See A369226.
Showing 1-2 of 2 results.