cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A369264 Expansion of (1/x) * Series_Reversion( x * (1-x)^3 / (1+x^2)^3 ).

Original entry on oeis.org

1, 3, 18, 127, 993, 8268, 71888, 645087, 5929527, 55544315, 528319662, 5088941628, 49539243900, 486606281496, 4816930145376, 48005470976271, 481262635723491, 4850084768085465, 49107197378659262, 499298960719688343, 5095861705240094097
Offset: 0

Views

Author

Seiichi Manyama, Jan 18 2024

Keywords

Crossrefs

Programs

  • Maple
    A369264 := proc(n)
        add(binomial(3*n+3,k) * binomial(4*n-2*k+2,n-2*k),k=0..floor(n/2)) ;
        %/(n+1) ;
    end proc;
    seq(A369264(n),n=0..70) ; # R. J. Mathar, Jan 25 2024
  • PARI
    my(N=30, x='x+O('x^N)); Vec(serreverse(x*(1-x)^3/(1+x^2)^3)/x)
    
  • PARI
    a(n, s=2, t=3, u=3) = sum(k=0, n\s, binomial(t*(n+1), k)*binomial((u+1)*(n+1)-s*k-2, n-s*k))/(n+1);

Formula

a(n) = (1/(n+1)) * Sum_{k=0..floor(n/2)} binomial(3*n+3,k) * binomial(4*n-2*k+2,n-2*k).
D-finite with recurrence +18*n*(3*n+2)*(2*n+3)*(3*n+1) *(2355222972296552964811*n -2353391098681877598217) *(n+1)*a(n) +3*n*(10232370941059360726949011*n^5 -6279411058144420889732231*n^4 +26515854213844281466097465*n^3 -21761373746876376187551525*n^2 -12108806260534489559295636*n +3394771165638813123794516)*a(n-1) +2*(-132629080888282243656059365*n^6 +156440924520330612537351287*n^5 -1546737637908414661531599805*n^4 +6858652031514251350543113065*n^3 -10688884261686986291502236950*n^2 +6884443241518652198616376568*n -1531720470240397832109679200)*a(n-2) +16*(-488032865226571716800174339*n^6 +5743512241166673419623793625*n^5 -28798925871340480498482300305*n^4 +76975939990931613139744649055*n^3 -114305622490237072905660442676*n^2 +89044784395613178550071941760*n -28430479725567026023998437760)*a(n-3) +384*(3*n-7) *(3*n-8)*(17416466042177225377415141*n^4 -183745766144088004186571330*n^3 +680994833213916542429809801*n^2 -1015881953145852406207817800*n +470197111913757817462248180)*a(n-4) +9216*(n-4)*(3*n-7)*(3*n-10) *(85246481204976073615097*n -71936955710157680798041)*(3*n-8) *(3*n-11)*a(n-5)=0. - R. J. Mathar, Jan 25 2024
a(n) = (1/(n+1)) * [x^n] ( 1/(1-x)^3 * (1+x^2)^3 )^(n+1). - Seiichi Manyama, Feb 14 2024

A369263 Expansion of (1/x) * Series_Reversion( x * (1-x)^2 / (1+x^2)^3 ).

Original entry on oeis.org

1, 2, 10, 54, 329, 2126, 14356, 100030, 713956, 5193064, 38354066, 286860714, 2168308302, 16537766036, 127114940840, 983657456878, 7657060437148, 59917814944376, 471062428422152, 3718952705982232, 29471640802526185, 234356062245289566, 1869405604537134116
Offset: 0

Views

Author

Seiichi Manyama, Jan 18 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serreverse(x*(1-x)^2/(1+x^2)^3)/x)
    
  • PARI
    a(n, s=2, t=3, u=2) = sum(k=0, n\s, binomial(t*(n+1), k)*binomial((u+1)*(n+1)-s*k-2, n-s*k))/(n+1);

Formula

a(n) = (1/(n+1)) * Sum_{k=0..floor(n/2)} binomial(3*n+3,k) * binomial(3*n-2*k+1,n-2*k).
a(n) = (1/(n+1)) * [x^n] ( 1/(1-x)^2 * (1+x^2)^3 )^(n+1). - Seiichi Manyama, Feb 14 2024

A369226 Expansion of (1/x) * Series_Reversion( x * (1-x) / (1+x^2)^2 ).

Original entry on oeis.org

1, 1, 4, 13, 53, 220, 968, 4373, 20271, 95705, 458904, 2228220, 10934524, 54143848, 270189008, 1357428997, 6860264323, 34853234867, 177900211204, 911867479717, 4691701977973, 24222505191984, 125448280976224, 651555603531308, 3392951906596708, 17711433386188300
Offset: 0

Views

Author

Seiichi Manyama, Jan 18 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serreverse(x*(1-x)/(1+x^2)^2)/x)
    
  • PARI
    a(n, s=2, t=2, u=1) = sum(k=0, n\s, binomial(t*(n+1), k)*binomial((u+1)*(n+1)-s*k-2, n-s*k))/(n+1);

Formula

a(n) = (1/(n+1)) * Sum_{k=0..floor(n/2)} binomial(2*n+2,k) * binomial(2*n-2*k,n-2*k).
a(n) = (1/(n+1)) * [x^n] ( 1/(1-x) * (1+x^2)^2 )^(n+1). - Seiichi Manyama, Feb 14 2024

A370244 Coefficient of x^n in the expansion of ( 1/(1-x) * (1+x^2)^3 )^n.

Original entry on oeis.org

1, 1, 9, 37, 221, 1176, 6759, 38368, 222189, 1290367, 7551534, 44367918, 261789647, 1549582126, 9198837384, 54740021712, 326445873389, 1950448508265, 11673082484595, 69965814023259, 419923664517546, 2523379461715576, 15180084331541402, 91411979525372616
Offset: 0

Views

Author

Seiichi Manyama, Feb 13 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n, s=2, t=3, u=1) = sum(k=0, n\s, binomial(t*n, k)*binomial((u+1)*n-s*k-1, n-s*k));

Formula

a(n) = Sum_{k=0..floor(n/2)} binomial(3*n,k) * binomial(2*n-2*k-1,n-2*k).
The g.f. exp( Sum_{k>=1} a(k) * x^k/k ) has integer coefficients and equals (1/x) * Series_Reversion( x * (1-x) / (1+x^2)^3 ). See A369262.
Showing 1-4 of 4 results.