A369240 Irregular triangle read by rows, where row n lists in ascending order all numbers k whose arithmetic derivative k' is equal to the n-th partial sum of primorials, A143293(n). Rows of length zero are simply omitted, i.e., when A369239(n) = 0.
14, 45, 74, 198, 5114, 10295, 65174, 1086194, 40354813, 20485574, 465779078, 12101385979, 15237604243, 18046312939, 29501083259, 52467636437, 65794608773, 86725630997, 87741700037, 131833085077, 168380217557, 176203950283, 177332276971, 226152989747, 292546582253, 307379277253, 321317084917, 342666536237, 348440115979
Offset: 1
Examples
Row 1 has no terms because there are no numbers whose arithmetic derivative is equal to 3 = A143293(1). Row 2 has just one term: 14 (= 2 * 7), with A003415(14) = 2+7 = 9 = A143293(2). Row 3 has two terms: 45 (= 3^2 * 5) and 74 (= 2 * 37), with A003415(3*3*5) = (3*3) + (3*5) + (3*5) = 39, and A003415(2*37) = 2+37 = 39 = A143293(3). Row 4 has one term: 198 (= 2 * 3^2 * 11). Row 5 has two terms: 5114 (= 2 * 2557) and 10295 (= 5 * 29 * 71). Row 6 has one term: 65174 (= 2 * 32587). Row 7 has two terms: 1086194 (= 2 * 543097) and 40354813 (= 97 * 541 * 769). Row 8 has one term: 20485574 (= 2 * 10242787). Row 9 has 27 terms: 465779078 (= 2 * 1049 * 222011), 12101385979 (= 79 * 151 * 1014451), 15237604243 (= 67 * 2659 * 85531), 18046312939 (= 79 * 3931 * 58111), 29501083259 (= 179 * 431 * 382391), 52467636437 (= 233 * 8501 * 26489), 65794608773 (= 449 * 761 * 192557), 86725630997 (= 449 * 2213 * 87281), 87741700037 (= 449 * 2381 * 82073), 131833085077 (= 613 * 12241 * 17569), etc., up to the last one of them: 680909375411 (= 8171 * 8219 * 10139). Row 10 has no terms. Row 11 has 319 terms, beginning as: 293420849770 (= 2 * 5 * 157 * 186892261), 414527038034 (= 2 * 207263519017), 12092143168139 (= 59 * 5231 * 39180191), 16359091676491 (= 79 * 91291 * 2268319), 20784361649963 (= 167 * 251 * 495845639), etc., up to the last one of them: 17866904665985941 (= 224869 * 248041 * 320329). Row 12 has just one term: 318745032938881 (= 71 * 173 * 307 * 1259 * 67139). Row 13 probably has thousands of terms. Interestingly, many of them appear in clusters that share a smallest prime factor. For example the following five: 390120053091860677 (= 1321 * 23563 * 12533283799), 407566547631686353 (= 1321 * 121687 * 2535429439), 410999481465461617 (= 1321 * 547999 * 567752023), 411668623600396429 (= 1321 * 1701571 * 183144919), 411913933485848977 (= 1321 * 8787799 * 35483263), and also these: 3846842704473466739 (= 20231 * 31601 * 6017086469), 4300947161911032233 (= 20231 * 43319 * 4907590697), 4437898843097002379 (= 20231 * 47969 * 4572980861), 6130224093530040341 (= 20231 * 692459 * 437587529), 6210584908378844243 (= 20231 * 1275569 * 240664037).
Links
- Antti Karttunen, Table of n, a(n) for n = 1..357; all terms up to the row 12 of the table.
- Antti Karttunen, PARI program for computing terms of this and related sequences.
Comments