A369257 a(n) = number of odd divisors of n that have an even number of prime factors with multiplicity.
1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 2, 1, 1, 2, 1, 2, 2, 1, 1, 2, 1, 1, 2, 1, 1, 3, 1, 1, 1, 2, 2, 2, 1, 1, 2, 2, 1, 2, 1, 1, 2, 1, 1, 3, 1, 2, 2, 1, 1, 2, 2, 1, 2, 1, 1, 3, 1, 2, 2, 1, 1, 3, 1, 1, 2, 2, 1, 2, 1, 1, 3, 2, 1, 2, 1, 2, 1, 1, 2, 3, 2, 1, 2, 1, 1, 4
Offset: 1
Keywords
Examples
Of the eight odd divisors of 105, the four divisors 1, 15, 21, 35 all have an even number of prime factors (A001222(d) is even), therefore a(105) = 4.
Links
- Antti Karttunen, Table of n, a(n) for n = 1..65537
Crossrefs
Formula
a(n) = Sum_{d|n} A353557(d).
a(n) = a(2*n) = a(A000265(n)).
From Antti Karttunen, Jan 27 2024: (Start)
Dirichlet g.f.: (zeta(s)^2*(1-2^-s) + zeta(2s)*(1+2^-s)) / 2.
(End)