cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A369265 Expansion of (1/x) * Series_Reversion( x * (1-x)^2 / (1+x^3) ).

Original entry on oeis.org

1, 2, 7, 31, 153, 806, 4439, 25250, 147193, 874732, 5279635, 32276245, 199439761, 1243633652, 7815804351, 49455190791, 314807497953, 2014530780524, 12952334769203, 83628832755779, 542022781854953, 3525150296312984, 22998642171764363, 150478455899387966
Offset: 0

Views

Author

Seiichi Manyama, Jan 18 2024

Keywords

Crossrefs

Programs

  • Maple
    A369265 := proc(n)
        add(binomial(n+1,k) * binomial(3*n-3*k+1,n-3*k),k=0..floor(n/3)) ;
        %/(n+1) ;
    end proc;
    seq(A369265(n),n=0..70) ; # R. J. Mathar, Jan 25 2024
  • PARI
    my(N=30, x='x+O('x^N)); Vec(serreverse(x*(1-x)^2/(1+x^3))/x)
    
  • PARI
    a(n, s=3, t=1, u=2) = sum(k=0, n\s, binomial(t*(n+1), k)*binomial((u+1)*(n+1)-s*k-2, n-s*k))/(n+1);

Formula

a(n) = (1/(n+1)) * Sum_{k=0..floor(n/3)} binomial(n+1,k) * binomial(3*n-3*k+1,n-3*k).
D-finite with recurrence 16*(n+1)*(2*n+1)*a(n) +4*(-89*n^2+15*n+2)*a(n-1) +3*(345*n^2-603*n+274)*a(n-2) +18*(-41*n^2+45*n+94)*a(n-3) +54*(-4*n^2+57*n-137)*a(n-4) +486*(n-4)*(n-5)*a(n-5) -243*(n-4)*(n-5)*a(n-6)=0. - R. J. Mathar, Jan 25 2024
a(n) = (1/(n+1)) * [x^n] ( 1/(1-x)^2 * (1+x^3) )^(n+1). - Seiichi Manyama, Feb 14 2024

A369269 Expansion of (1/x) * Series_Reversion( x * (1-x)^2 / (1+x^3)^3 ).

Original entry on oeis.org

1, 2, 7, 33, 173, 962, 5586, 33498, 205846, 1289386, 8202247, 52845855, 344129832, 2261377872, 14976646685, 99863119809, 669860309538, 4517037850220, 30603008068997, 208211448723097, 1421986458302466, 9745007758311114, 66993247112160800
Offset: 0

Views

Author

Seiichi Manyama, Jan 18 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serreverse(x*(1-x)^2/(1+x^3)^3)/x)
    
  • PARI
    a(n, s=3, t=3, u=2) = sum(k=0, n\s, binomial(t*(n+1), k)*binomial((u+1)*(n+1)-s*k-2, n-s*k))/(n+1);

Formula

a(n) = (1/(n+1)) * Sum_{k=0..floor(n/3)} binomial(3*n+3,k) * binomial(3*n-3*k+1,n-3*k).
a(n) = (1/(n+1)) * [x^n] ( 1/(1-x)^2 * (1+x^3)^3 )^(n+1). - Seiichi Manyama, Feb 14 2024

A369266 Expansion of (1/x) * Series_Reversion( x * (1-x) / (1+x^3)^2 ).

Original entry on oeis.org

1, 1, 2, 7, 24, 84, 313, 1209, 4769, 19166, 78253, 323570, 1352122, 5701467, 24229122, 103663575, 446163435, 1930390329, 8391341664, 36630504952, 160509484616, 705750073063, 3112865367660, 13769327908980, 61066953746400, 271488240652950, 1209671359828154
Offset: 0

Views

Author

Seiichi Manyama, Jan 18 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serreverse(x*(1-x)/(1+x^3)^2)/x)
    
  • PARI
    a(n, s=3, t=2, u=1) = sum(k=0, n\s, binomial(t*(n+1), k)*binomial((u+1)*(n+1)-s*k-2, n-s*k))/(n+1);

Formula

a(n) = (1/(n+1)) * Sum_{k=0..floor(n/3)} binomial(2*n+2,k) * binomial(2*n-3*k,n-3*k).
a(n) = (1/(n+1)) * [x^n] ( 1/(1-x) * (1+x^3)^2 )^(n+1). - Seiichi Manyama, Feb 14 2024

A370249 Coefficient of x^n in the expansion of ( 1/(1-x)^2 * (1+x^3)^2 )^n.

Original entry on oeis.org

1, 2, 10, 62, 394, 2552, 16810, 112114, 754698, 5116832, 34891260, 239036470, 1644001546, 11344059092, 78497737370, 544507428962, 3785080540682, 26360971309824, 183895618774084, 1284778549054704, 8988079638054044, 62955181189933276, 441442177486335002
Offset: 0

Views

Author

Seiichi Manyama, Feb 13 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n, s=3, t=2, u=2) = sum(k=0, n\s, binomial(t*n, k)*binomial((u+1)*n-s*k-1, n-s*k));

Formula

a(n) = Sum_{k=0..floor(n/3)} binomial(2*n,k) * binomial(3*n-3*k-1,n-3*k).
The g.f. exp( Sum_{k>=1} a(k) * x^k/k ) has integer coefficients and equals (1/x) * Series_Reversion( x * (1-x)^2 / (1+x^3)^2 ). See A369267.
Showing 1-4 of 4 results.