A369269
Expansion of (1/x) * Series_Reversion( x * (1-x)^2 / (1+x^3)^3 ).
Original entry on oeis.org
1, 2, 7, 33, 173, 962, 5586, 33498, 205846, 1289386, 8202247, 52845855, 344129832, 2261377872, 14976646685, 99863119809, 669860309538, 4517037850220, 30603008068997, 208211448723097, 1421986458302466, 9745007758311114, 66993247112160800
Offset: 0
-
my(N=30, x='x+O('x^N)); Vec(serreverse(x*(1-x)^2/(1+x^3)^3)/x)
-
a(n, s=3, t=3, u=2) = sum(k=0, n\s, binomial(t*(n+1), k)*binomial((u+1)*(n+1)-s*k-2, n-s*k))/(n+1);
A369267
Expansion of (1/x) * Series_Reversion( x * (1-x)^2 / (1+x^3)^2 ).
Original entry on oeis.org
1, 2, 7, 32, 163, 884, 5009, 29310, 175750, 1074264, 6668825, 41929970, 266464579, 1708829584, 11044663663, 71871779008, 470495357634, 3096311833496, 20472771422946, 135937759368388, 906056228361095, 6059922934991008, 40657629626645463
Offset: 0
-
my(N=30, x='x+O('x^N)); Vec(serreverse(x*(1-x)^2/(1+x^3)^2)/x)
-
a(n, s=3, t=2, u=2) = sum(k=0, n\s, binomial(t*(n+1), k)*binomial((u+1)*(n+1)-s*k-2, n-s*k))/(n+1);
A369297
Expansion of (1/x) * Series_Reversion( x * (1-x)^2 * (1-x^3) ).
Original entry on oeis.org
1, 2, 7, 31, 153, 806, 4440, 25266, 147364, 876282, 5292527, 32378125, 200218715, 1249456536, 7858638756, 49766595855, 317051378103, 2030589300596, 13066646029059, 84439101344619, 547746622599561, 3565472378360110, 23282050305073680, 152466688160732190
Offset: 0
-
my(N=30, x='x+O('x^N)); Vec(serreverse(x*(1-x)^2*(1-x^3))/x)
-
a(n, s=3, t=1, u=2) = sum(k=0, n\s, binomial(t*(n+1)+k-1, k)*binomial((u+1)*(n+1)-s*k-2, n-s*k))/(n+1);
A370247
Coefficient of x^n in the expansion of ( 1/(1-x)^2 * (1+x^3) )^n.
Original entry on oeis.org
1, 2, 10, 59, 362, 2277, 14575, 94474, 618154, 4074197, 27008885, 179897720, 1202961215, 8070830588, 54302131642, 366252974259, 2475575739306, 16764524795037, 113719280941453, 772551326290528, 5255393538550837, 35794109754866998, 244060675562790316
Offset: 0
-
a(n, s=3, t=1, u=2) = sum(k=0, n\s, binomial(t*n, k)*binomial((u+1)*n-s*k-1, n-s*k));
Showing 1-4 of 4 results.