A369286 Triangle read by rows: T(n,k) is the number of non-isomorphic multiset partitions of weight n with k parts and no constant parts or vertices that appear in only one part, 0 <= k <= floor(n/2).
1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 5, 2, 0, 0, 6, 3, 0, 0, 16, 16, 5, 0, 0, 22, 44, 13, 0, 0, 45, 135, 82, 11, 0, 0, 64, 338, 301, 52, 0, 0, 119, 880, 1233, 382, 34, 0, 0, 171, 2024, 4090, 1936, 211, 0, 0, 294, 4674, 13474, 9500, 1843, 87, 0, 0, 433, 10191, 40532, 40817, 11778, 873
Offset: 0
Examples
Triangle begins: 1; 0; 0, 0; 0, 0; 0, 0, 1; 0, 0, 1; 0, 0, 5, 2; 0, 0, 6, 3; 0, 0, 16, 16, 5; 0, 0, 22, 44, 13; 0, 0, 45, 135, 82, 11; 0, 0, 64, 338, 301, 52; 0, 0, 119, 880, 1233, 382, 34; 0, 0, 171, 2024, 4090, 1936, 211; ... The T(6,2) = 5 multiset partitions are: {{1,1,1,2}, {1,2}}, {{1,1,2,2}, {1,2}}, {{1,1,2}, {1,1,2}}, {{1,1,2}, {1,2,2}}, {{1,2,3}, {1,2,3}}. The corresponding T(6,2) = 5 matrices are: [3 1] [2 2] [2 1] [2 1] [1 1 1] [1 1] [1 1] [2 1] [1 2] [1 1 1] The T(6,3) = 2 matrices are: [1 1] [1 1 0] [1 1] [1 0 1] [1 1] [0 1 1]
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..675 (rows 0..50)
Programs
-
PARI
EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)} permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m} K(q, t, k)={EulerT(Vec(sum(j=1, #q, my(g=gcd(t, q[j])); g*x^(q[j]/g)) + O(x*x^k), -k))} H(q, t, k)={my(c=sum(j=1, #q, if(t%q[j]==0, q[j]))); eta(x + O(x*x^k))*(1 + x*Ser(K(q,t,k))) + x*(1-c)/(1-x) - 1} G(n,y=1)={my(s=0); forpart(q=n, s+=permcount(q)*exp(sum(t=1, n, subst(H(q, t, n\t)*y^t/t, x, x^t) ))); s/n!} T(n)={my(v=Vec(G(n,'y))); vector(#v, i, Vecrev(v[i], (i+1)\2))} { my(A=T(15)); for(i=1, #A, print(A[i])) }
Formula
T(2*n,n) = A307316(n).
Comments