cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A369287 Triangle read by rows: T(n,k) is the number of non-isomorphic multiset partitions of weight n with k parts and no singletons or vertices that appear only once, 0 <= k <= floor(n/2).

Original entry on oeis.org

1, 0, 0, 1, 0, 1, 0, 2, 3, 0, 2, 4, 0, 4, 15, 8, 0, 4, 24, 19, 0, 7, 60, 79, 23, 0, 8, 101, 213, 84, 0, 12, 210, 615, 424, 66, 0, 14, 357, 1523, 1533, 363, 0, 21, 679, 3851, 5580, 2217, 212, 0, 24, 1142, 8963, 17836, 10379, 1575, 0, 34, 2049, 20840, 55730, 45866, 11616, 686
Offset: 0

Views

Author

Andrew Howroyd, Jan 28 2024

Keywords

Comments

T(n,k) is the number of nonnegative integer matrices with sum of values n, k rows and every row and column sum at least two up to permutation of rows and columns.

Examples

			Triangle begins:
  1;
  0;
  0,  1;
  0,  1;
  0,  2,    3;
  0,  2,    4;
  0,  4,   15,    8;
  0,  4,   24,   19;
  0,  7,   60,   79,    23;
  0,  8,  101,  213,    84;
  0, 12,  210,  615,   424,    66;
  0, 14,  357, 1523,  1533,   363;
  0, 21,  679, 3851,  5580,  2217,  212;
  0, 24, 1142, 8963, 17836, 10379, 1575;
  ...
The T(5,1) = 2 multiset partitions are:
   {{1,1,1,1,1}},
   {{1,1,1,2,2}}.
The corresponding T(5,1) = 2 matrices are:
   [5]  [3 2].
The T(5,2) = 4 matrices are:
   [3]  [3 0]  [2 1]  [2 1]
   [2]  [0 2]  [1 1]  [0 2],
		

Crossrefs

Row sums are A320665.
Columns k=0..1 are A000007, A002865(n>0).

Programs

  • PARI
    EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
    permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
    K(q, t, k)={EulerT(Vec(sum(j=1, #q, my(g=gcd(t, q[j])); g*x^(q[j]/g)) + O(x*x^k), -k))}
    H(q, t, k)={my(c=sum(j=1, #q, if(t%q[j]==0, q[j]))); (1 - x)*x*Ser(K(q,t,k)) - c*x}
    G(n,y=1)={my(s=0); forpart(q=n, s+=permcount(q)*exp(sum(t=1, n, subst(H(q, t, n\t)*y^t/t, x, x^t) ))); s/n!}
    T(n)={my(v=Vec(G(n,'y))); vector(#v, i, Vecrev(v[i], (i+1)\2))}
    { my(A=T(15)); for(i=1, #A, print(A[i])) }

Formula

T(2*n, n) = A050535(n).