A369287 Triangle read by rows: T(n,k) is the number of non-isomorphic multiset partitions of weight n with k parts and no singletons or vertices that appear only once, 0 <= k <= floor(n/2).
1, 0, 0, 1, 0, 1, 0, 2, 3, 0, 2, 4, 0, 4, 15, 8, 0, 4, 24, 19, 0, 7, 60, 79, 23, 0, 8, 101, 213, 84, 0, 12, 210, 615, 424, 66, 0, 14, 357, 1523, 1533, 363, 0, 21, 679, 3851, 5580, 2217, 212, 0, 24, 1142, 8963, 17836, 10379, 1575, 0, 34, 2049, 20840, 55730, 45866, 11616, 686
Offset: 0
Examples
Triangle begins: 1; 0; 0, 1; 0, 1; 0, 2, 3; 0, 2, 4; 0, 4, 15, 8; 0, 4, 24, 19; 0, 7, 60, 79, 23; 0, 8, 101, 213, 84; 0, 12, 210, 615, 424, 66; 0, 14, 357, 1523, 1533, 363; 0, 21, 679, 3851, 5580, 2217, 212; 0, 24, 1142, 8963, 17836, 10379, 1575; ... The T(5,1) = 2 multiset partitions are: {{1,1,1,1,1}}, {{1,1,1,2,2}}. The corresponding T(5,1) = 2 matrices are: [5] [3 2]. The T(5,2) = 4 matrices are: [3] [3 0] [2 1] [2 1] [2] [0 2] [1 1] [0 2],
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..675 (rows 0..50)
Programs
-
PARI
EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)} permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m} K(q, t, k)={EulerT(Vec(sum(j=1, #q, my(g=gcd(t, q[j])); g*x^(q[j]/g)) + O(x*x^k), -k))} H(q, t, k)={my(c=sum(j=1, #q, if(t%q[j]==0, q[j]))); (1 - x)*x*Ser(K(q,t,k)) - c*x} G(n,y=1)={my(s=0); forpart(q=n, s+=permcount(q)*exp(sum(t=1, n, subst(H(q, t, n\t)*y^t/t, x, x^t) ))); s/n!} T(n)={my(v=Vec(G(n,'y))); vector(#v, i, Vecrev(v[i], (i+1)\2))} { my(A=T(15)); for(i=1, #A, print(A[i])) }
Formula
T(2*n, n) = A050535(n).
Comments