cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A369290 Number of unlabeled simple graphs without endpoints with n edges.

Original entry on oeis.org

1, 0, 0, 1, 1, 2, 6, 10, 25, 68, 182, 538, 1748, 5935, 21585, 82904, 334037, 1406934, 6167455, 28033776, 131770437, 638956188, 3189940453, 16369201031, 86214798929, 465480395911, 2573390342437, 14553415319929, 84118459655982, 496514424803358, 2990633679878654
Offset: 0

Views

Author

Andrew Howroyd, Jan 30 2024

Keywords

Crossrefs

Row sums of A369932.
Cf. A004110 (n vertices), A307316 (multigraph), A342556 (connected).

Programs

  • PARI
    \\ See also A369932 for a more efficient program.
    permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
    edges(v, t) = {prod(i=2, #v, prod(j=1, i-1, my(g=gcd(v[i], v[j])); t(v[i]*v[j]/g)^g )) * prod(i=1, #v, my(c=v[i]); t(c)^((c-1)\2)*if(c%2, 1, t(c/2)))}
    seq(n)={my(s=0); forpart(p=2*n, s+=permcount(p)*prod(i=1, #p, 1-x^p[i])*edges(p, w->1+x^w + O(x*x^n))); Vec(s/(2*n)!)}

Formula

Euler transform of A342556.