A369295 a(n) is the first number k such that Omega(k) = n and Omega(n - 1) = Omega(n + 1) = n + 1.
5, 51, 343, 3185, 75951, 1780624, 16825375, 212781249, 4613781249, 74239460225, 858245781249, 46055847109375, 487028345781249
Offset: 1
Examples
a(3) = 343 because 343 = 7^3 has 3 prime factors while 342 = 2 * 3^2 * 19 and 344 = 2^3 * 43 each have 4, and 343 is the least number that works.
Programs
-
Maple
V:= Vector(8): count:= 0: b:= 0: c:= 1: for n from 3 do a:= b; b:= c; c:= numtheory:-bigomega(n); if a = b+1 and c = b+1 and b <= 8 and V[b] = 0 then V[b]:= n-1; count:= count+1; if count = 8 then break fi; fi od: convert(V,list);
-
PARI
generate(A, B, n) = A=max(A, 2^n); (f(m, p, k) = my(list=List()); if(k==1, forprime(q=max(p, ceil(A/m)), B\m, my(t=m*q); if(bigomega(t+2) == n && bigomega(t+1) == n-1, listput(list, t+1))), forprime(q = p, sqrtnint(B\m, k), list=concat(list, f(m*q, q, k-1)))); list); vecsort(Vec(f(1, 2, n))); a(n) = my(x=2^n, y=2*x); while(1, my(v=generate(x, y, n+1)); if(#v >= 1, return(v[1])); x=y+1; y=2*x); \\ Daniel Suteu, Jan 19 2024
Extensions
a(9)-a(11) from Daniel Suteu, Jan 19 2024
a(12)-a(13) from Martin Ehrenstein, Feb 12 2024
Comments