cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A369300 Expansion of (1/x) * Series_Reversion( x * (1-x)^2 * (1-x^3)^3 ).

Original entry on oeis.org

1, 2, 7, 33, 173, 962, 5589, 33546, 206359, 1294096, 8242375, 53173095, 346724250, 2281555440, 15131448440, 101038950441, 678724811604, 4583483218340, 31098830566098, 211898222878937, 1449322361547669, 9947227335902244, 68486384818253877
Offset: 0

Views

Author

Seiichi Manyama, Jan 18 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serreverse(x*(1-x)^2*(1-x^3)^3)/x)
    
  • PARI
    a(n, s=3, t=3, u=2) = sum(k=0, n\s, binomial(t*(n+1)+k-1, k)*binomial((u+1)*(n+1)-s*k-2, n-s*k))/(n+1);

Formula

a(n) = (1/(n+1)) * Sum_{k=0..floor(n/3)} binomial(3*n+k+2,k) * binomial(3*n-3*k+1,n-3*k).
a(n) = (1/(n+1)) * [x^n] 1/( (1-x)^2 * (1-x^3)^3 )^(n+1). - Seiichi Manyama, Feb 14 2024

A370275 Coefficient of x^n in the expansion of 1/( (1-x)^2 * (1-x^3)^2 )^n.

Original entry on oeis.org

1, 2, 10, 62, 394, 2552, 16822, 112310, 756874, 5137676, 35076360, 240606082, 1656906550, 11447855850, 79319081054, 550925792312, 3834743187594, 26742188401900, 186802789016908, 1306827910585782, 9154542088193544, 64206944261628146, 450823141806229290
Offset: 0

Views

Author

Seiichi Manyama, Feb 13 2024

Keywords

Crossrefs

Cf. A369298.

Programs

  • PARI
    a(n, s=3, t=2, u=2) = sum(k=0, n\s, binomial(t*n+k-1, k)*binomial((u+1)*n-s*k-1, n-s*k));

Formula

a(n) = Sum_{k=0..floor(n/3)} binomial(2*n+k-1,k) * binomial(3*n-3*k-1,n-3*k).
The g.f. exp( Sum_{k>=1} a(k) * x^k/k ) has integer coefficients and equals (1/x) * Series_Reversion( x * (1-x)^2 * (1-x^3)^2 ). See A369298.
Showing 1-2 of 2 results.