A369299
Expansion of (1/x) * Series_Reversion( x * (1-x) * (1-x^3)^3 ).
Original entry on oeis.org
1, 1, 2, 8, 29, 105, 417, 1719, 7181, 30603, 132736, 582790, 2585352, 11575613, 52237278, 237328704, 1084701387, 4983867447, 23007263941, 106658256768, 496336303014, 2317687534865, 10856677523580, 51001805706435, 240225121539000, 1134240896062656, 5367428039668751
Offset: 0
-
my(N=30, x='x+O('x^N)); Vec(serreverse(x*(1-x)*(1-x^3)^3)/x)
-
a(n, s=3, t=3, u=1) = sum(k=0, n\s, binomial(t*(n+1)+k-1, k)*binomial((u+1)*(n+1)-s*k-2, n-s*k))/(n+1);
A369301
Expansion of (1/x) * Series_Reversion( x * (1-x)^3 * (1-x^3)^3 ).
Original entry on oeis.org
1, 3, 15, 94, 657, 4902, 38236, 308025, 2542965, 21401780, 182934144, 1583745114, 13858675065, 122379042879, 1089156646584, 9759520978270, 87975115569873, 797233088237190, 7258632128721117, 66367727370376632, 609132332475784548, 5610015849998778144
Offset: 0
-
my(N=30, x='x+O('x^N)); Vec(serreverse(x*(1-x)^3*(1-x^3)^3)/x)
-
a(n, s=3, t=3, u=3) = sum(k=0, n\s, binomial(t*(n+1)+k-1, k)*binomial((u+1)*(n+1)-s*k-2, n-s*k))/(n+1);
A369298
Expansion of (1/x) * Series_Reversion( x * (1-x)^2 * (1-x^3)^2 ).
Original entry on oeis.org
1, 2, 7, 32, 163, 884, 5011, 29342, 176092, 1077384, 6695093, 42140930, 268108170, 1721372836, 11138994028, 72573587520, 475674650717, 3134297846792, 20750020222815, 137953554890508, 920667400056250, 6165565645765092, 41419898169301995
Offset: 0
-
my(N=30, x='x+O('x^N)); Vec(serreverse(x*(1-x)^2*(1-x^3)^2)/x)
-
a(n, s=3, t=2, u=2) = sum(k=0, n\s, binomial(t*(n+1)+k-1, k)*binomial((u+1)*(n+1)-s*k-2, n-s*k))/(n+1);
A369402
Expansion of (1/x) * Series_Reversion( x / (1+x)^2 * (1-x^3)^3 ).
Original entry on oeis.org
1, 2, 5, 17, 72, 330, 1554, 7490, 36992, 186582, 956573, 4967425, 26070960, 138081690, 737120376, 3962039625, 21424392088, 116467354320, 636141911420, 3489357591052, 19213097243736, 106158276425242, 588409936029990, 3270832234633026, 18229957695363048
Offset: 0
-
my(N=30, x='x+O('x^N)); Vec(serreverse(x/(1+x)^2*(1-x^3)^3)/x)
-
a(n, s=3, t=3, u=2) = sum(k=0, n\s, binomial(t*(n+1)+k-1, k)*binomial(u*(n+1), n-s*k))/(n+1);
Showing 1-4 of 4 results.