A369313 Number of interval-closed sets in the boolean lattice of dimension n.
2, 4, 13, 101, 3938, 3257610, 676675164063
Offset: 0
Examples
The a(0) = 2 through a(2) = 13 interval-closed sets: {} {} {} {{}} {{}} {{}} {{1}} {{1}} {{}{1}} {{2}} {{12}} {{}{1}} {{}{2}} {{1}{2}} {{1}{12}} {{2}{12}} {{}{1}{2}} {{1}{2}{12}} {{}{1}{2}{12}}
Links
- Jennifer Elder, Nadia Lafrenière, Erin McNicholas, Jessica Striker, and Amanda Welch, Toggling, rowmotion, and homomesy on interval-closed sets, arXiv:2307.08520 [math.CO], 2023.
Crossrefs
Interval-closed sets are a superset of order ideals. Cf. A000372.
Programs
-
SageMath
ICS_count = 0 x = Posets.BooleanLattice(n) for A in x.antichains_iterator(): I = x.order_ideal(A) Q = x.subposet(set(I).difference(A)) ICS_count += Q.antichains().cardinality() ICS_count
Extensions
a(6) from Christian Sievers, Jan 27 2024
Comments