A369315 Number of chiral pairs of polyominoes composed of n square cells of the hyperbolic regular tiling with Schläfli symbol {4,oo}.
2, 9, 48, 231, 1188, 6114, 32448, 175032, 962472, 5370524, 30377504, 173816313, 1004823816, 5861490300, 34468767840, 204161269620, 1217143807770, 7299003615537, 44005594027200, 266608363362900
Offset: 4
Examples
__ __ __ __ __ __ __ __ __ __ |__|__|__| |__|__|__| |__|__|__ __|__|__| a(4) = 2. |__| |__| |__|__| |__|__|
Links
- Malin Christensson, Make hyperbolic tilings of images, web page, 2019.
Crossrefs
Programs
-
Mathematica
p=4; Table[(Binomial[(p-1)n,n]/(((p-2)n+1)((p-2)n+2))-If[OddQ[n],If[OddQ[p],Binomial[(p-1)n/2,(n-1)/2]/n,(p+1)Binomial[((p-1)n-1)/2,(n-1)/2]/((p-2)n+2)-Binomial[((p-1)n+1)/2,(n-1)/2]/((p-1)n+1)],Binomial[(p-1)n/2,n/2]/((p-2)n+2)]+DivisorSum[GCD[p,n-1],EulerPhi[#]Binomial[((p-1)n+1)/#,(n-1)/#]/((p-1)n+1)&,#>1&])/2,{n,4,30}] Table[(3Binomial[3n,n]/(2n+1)-Binomial[3n+1,n]/(n+1)-If[OddQ[n],6Binomial[(3n-1)/2,(n-1)/2]-If[1==Mod[n,4],4Binomial[(3n-3)/4,(n-1)/4],0],2Binomial[3n/2,n/2]]/(n+1))/8,{n,0,30}] (* Robert A. Russell, Jun 19 2025 *)
Comments